We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

New DNA Origami Technique to Advance Disease Diagnosis

By LabMedica International staff writers
Posted on 15 May 2024
Print article
Image: The innovative method to customize and strengthen DNA origami structure promises breakthroughs in medicine (Photo courtesy of Shutterstock)
Image: The innovative method to customize and strengthen DNA origami structure promises breakthroughs in medicine (Photo courtesy of Shutterstock)

DNA origami is a method used to create nanostructures with exceptional precision, utilizing DNA strands as the foundational building blocks. These structures, however, are inherently fragile and prone to disintegration under biological conditions, such as fluctuations in temperature or the presence of certain enzymes in living organisms. To address this vulnerability, researchers have now devised an innovative method to both customize and strengthen DNA origami, offering the potential to advance drug delivery and disease diagnostics.

A team of scientists from the universities of Portsmouth (Portsmouth, UK) and Leicester (Leicester, UK) has pioneered a novel approach to reinforce these origami structures, making them both stronger and more adaptable through a process they call triplex-directed photo-cross-linking. This technique involves the strategic addition of new nucleotide sequences to the DNA during the design phase. These sequences are the basic building blocks of DNA and act as attachment points for functional molecules, enhancing the structure's stability and functionality.

The attachment of these molecules is facilitated using triplex-forming oligonucleotides that carry a cross-linking agent. A chemical reaction driven by UVA light then permanently binds these molecules to the DNA, creating what the researchers describe as “super-staples.” These staples significantly enhance the integrity of the structure, making it less susceptible to thermal degradation and enzymatic breakdown. This new method is both scalable and economical, compatible with existing origami designs, and does not require redesigning the scaffold. It can be implemented using just a single strand of DNA. DNA origami is currently being applied in several biomedical fields, including vaccines, biological nanosensors, drug delivery systems, structural biology, and carriers for genetic material.

"The potential applications of this technique are far-reaching. The ability to tailor DNA origami structures with specific functionalities holds immense promise for advancing medical treatments and diagnostics,” said Dr. David Rusling from the University of Portsmouth’s School of Pharmacy and Biomedical Sciences. "We envision a future where DNA origami structures could be used to deliver drugs or DNA directly to diseased cells, or to create highly sensitive diagnostic tools.”

Related Links:
University of Portsmouth
University of Leicester

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
POCT Fluorescent Immunoassay Analyzer
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more


view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more


view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.