We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Hantavirus Rapid Test Paves Way for Early Outbreak Control

By LabMedica International staff writers
Posted on 29 Feb 2024
Print article
Image: The approach of the study was rooted in adoption of NGS technologies with spotlight on MinION nanopore sequencer (Photo courtesy of Oxford Nanopore)
Image: The approach of the study was rooted in adoption of NGS technologies with spotlight on MinION nanopore sequencer (Photo courtesy of Oxford Nanopore)

Orthohantaviruses, known for their ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome in the Americas, are significant public health concerns due to their high transmission rates and impact on health. These zoonotic pathogens have been the focus of extensive research, particularly for controlling outbreaks and devising intervention strategies. In South Korea's Gyeonggi Province, a notable number of HFRS cases have been reported, highlighting the need for diligent epidemiological surveillance and a deeper understanding of orthohantaviruses' genomic diversity. Now, new research has unveiled the potential of cost-efficient Flongle sequencing for rapid hantavirus genome-based diagnostics and phylogeographical surveillance.

A research team from Korea University College of Medicine (Seoul, South Korea) undertook a study in the Gyeonggi Province to investigate the prevalence, viral loads, and genetic variations of Hantaan orthohantavirus (HTNV). They utilized Flongle sequencing, an innovative and budget-friendly approach, for detecting HTNV genomes, emphasizing the use of the Oxford MinION nanopore sequencer in the field of next-generation sequencing technologies. The team's methodology included capturing rodents and shrews from various areas using live traps, followed by mitochondrial DNA analysis, indirect immunofluorescence antibody tests, and other molecular methods for species identification and virus detection.

During the 2017-2018 surveillance in Gyeonggi Province, a substantial presence of Apodemus agrarius, a common rodent species, was noted. Among these, 12.4% were found to be seropositive for HTNV, indicating the virus's prevalence in the region. The use of Flongle sequencing was key in acquiring full-length genomic sequences from positive samples, achieving high coverage rates and accuracy on par with Illumina sequencing. The study's phylogeographical analysis revealed distinct evolutionary divergence among HTNV's tripartite genomes, with genetic clustering and evolutionary pattern incongruences highlighting the virus's segment-specific evolution.

While the study offers critical insights, the researchers acknowledge limitations like the need for enhanced sensitivity testing of Flongle-based diagnostics and the requirement for broader genomic and epidemiological data in certain endemic areas. This research represents a major advancement in the understanding of orthohantaviruses and sets the stage for more focused strategies to combat HFRS outbreaks. The findings underscore the importance of genomics in disease surveillance and hold promise for improved responses to emerging infectious diseases.

“We developed a rapid and sensitive on-site diagnostic using a nanopore-based Flongle chip with a reasonable cost of around $100. This approach enables virtually whole-genome sequencing of HTNV within 3 hours,” said Prof. Jin-Won Song from Korea University College of Medicine who led the research. "We believe our findings provide important insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK. Our study pioneers the integration of cost-efficient Flongle sequencing into hantavirus diagnostics, offering a rapid and accurate tool for on-site detection. This innovation has the potential to transform how we approach and manage hantavirus outbreaks."

Related Links:
Korea University College of Medicine 

New
Gold Member
RPR and TPLA Assays
SEKURE RPR and TPLA Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Metabolic Disorder Test
LIAISON Bone & Mineral Diagnostic Solution
New
Silver Member
Cytomegalovirus Test
ReQuest CMV IgM ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The ChatGPT-like AI model can diagnose cancer, guide treatment choice, predict survival across multiple cancer types (Photo courtesy of 123RF)

AI Tool Diagnoses Cancer, Guides Treatment and Predicts Survival Across Multiple Cancer Types

Current artificial intelligence (AI) models are typically specialized, designed for specific tasks like detecting cancer or predicting tumor genetics, and are limited to a few cancer types.... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.