We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Groundbreaking CRISPR Technology Could Revolutionize Diagnosis of Genetic Diseases

By LabMedica International staff writers
Posted on 29 Jan 2024

Diagnosing rare genetic diseases presents a significant challenge due to their complex and often hidden nature. More...

These conditions can arise from a diverse array of genetic variations, many of which are uncommon or specific to each individual, complicating the identification of the exact cause of symptoms. Until recently, unraveling these mysteries involved extensive genetic testing and comparing an individual’s genetic profile against established disease patterns. Complicating matters further, many relevant genes are inactive in commonly tested tissues like blood and skin, which makes it difficult to get a clear picture of the genetic basis of these diseases. This complexity not only prolongs the diagnostic process but also extends patient and family uncertainty and delays the initiation of suitable treatments. Now, a new study could mark a significant step forward in the rapid and efficient diagnosis of these complex diseases, which can affect any part of the body.

At Aarhus University in Denmark, researchers have employed CRISPR technology to activate genes in easily accessible cells such as skin or blood. This technique enables the measurement of the correct assembly of messenger RNA - a biological process known as splicing. This advancement is significant since approximately 19% of genes associated with diseases are inactive in readily obtainable tissues like skin and blood cells. Using CRISPR activation, a groundbreaking method that “switches on” normally inactive genes, the researchers successfully activated the MPZ gene, typically active only in the insulating layer of nerve pathways. By activating this gene in skin cells, the team has opened new avenues for analyzing, diagnosing, and understanding genetic diseases.

This innovative approach aims to enhance the efficiency, accuracy, and accessibility of diagnosing genetic diseases. The research team is already working to integrate this technology into clinical diagnostics. This method could significantly contribute to making accurate diagnoses when splicing variants are identified. Furthermore, the team is exploring the wider application of this method and plans to validate a larger panel of genes to determine how the technique can be expanded and modified for even simpler clinical applications.

"With CRISPR activation, the gene can be turned on in a natural environment. There's no need for gene modification in cell models; one can simply take a sample from the patient," said Uffe Birk Jensen from Aarhus University. “The same method can be used for different patients and easily adapted to other genes, and the advantage is that it's very fast with the possibility of results within a few weeks.”

Related Links:
Aarhus University


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
New
Hemodynamic System Monitor
OptoMonitor
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.