We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Blood Test to Track Gene Expression in the Brain Could Help Prevent Neurological Diseases

By LabMedica International staff writers
Posted on 16 Jan 2024

Encased within a complex network of specialized blood vessels, the brain remains the body's most protected organ. More...

This intricate structure, while protective against external threats, poses significant challenges for researchers seeking to understand gene expression dynamics and their link to diseases. Addressing this challenge, scientists have now introduced a noninvasive method to track gene expression in the brain, potentially transforming research in brain development, cognitive function, and neurological disorders.

The team of scientists at Rice University (Houston, TX, USA) has developed a groundbreaking class of molecules named released markers of activity (RMAs). These RMAs offer a noninvasive solution to measure gene expression in the brain via a simple blood test. Traditionally, assessing gene expression in the brain has been limited to post-mortem analysis or less sensitive and specific modern neuroimaging techniques. The RMA platform, however, introduces a synthetic gene expression reporter into the brain, which synthesizes a protein capable of traversing the blood-brain barrier, thus facilitating the measurement of gene expression changes via a simple blood test.

Prior studies have found that antibodies cross the blood-brain barrier using the neonatal fragment crystallizable receptor (FcRn), a gene instrumental in regulating antibody levels in the body. Utilizing advanced bioengineering methods, the Rice University team fused the antibody segment responsible for blood-brain barrier passage with a common reporter protein. This innovation allowed for the successful attachment of RMAs to specific genes. When these genes were expressed in a mouse's brain, their expression was detectable in the animal’s blood. The scientists believe that RMAs could become an essential tool for researchers to monitor brain gene expression. For instance, the RMA platform could be invaluable in determining the duration of novel gene therapies within the brain.

“This method is very sensitive and can track changes in specific cells,” said Rice bioengineer Jerzy Szablowski. “Producing this protein in approximately 1% of the brain raised its blood levels up to 100,000-fold compared to baseline. We could specifically track the expression of this one protein with just a blood test.”

“We could track these new therapies with just a blood test and continue to monitor them over time since the RMA platform is noninvasive,” Szablowski added. “But we can also use RMAs to study gene expression as it relates to disease. Being able to track different gene expression changes will allow us to understand what leads to disease and how the disease itself changes gene expression in the brain. This could provide new clues for drug development, or even for how to prevent neurological diseases in the first place.”

Related Links:
Rice University


New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.