We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Groundbreaking Diagnostic Technique Enables Faster and More Accurate Detection of Neurodegenerative Diseases

By LabMedica International staff writers
Posted on 11 May 2023
Print article
Image: New technique could enable rapid detection of neurodegenerative diseases (Photo courtesy of University of Minnesota)
Image: New technique could enable rapid detection of neurodegenerative diseases (Photo courtesy of University of Minnesota)

Neurodegenerative conditions like Alzheimer's, Parkinson's, mad cow disease, and chronic wasting disease (CWD) all exhibit a shared characteristic: the accumulation of misfolded proteins within the central nervous system. Identifying these misfolded proteins is vital for understanding and diagnosing these diseases. However, existing diagnostic techniques, such as enzyme-linked immunosorbent assay and immunohistochemistry, may be costly, labor-intensive, and restrictive in terms of antibody specificity. Now, scientists have designed an innovative diagnostic procedure that enables quicker and more precise detection of neurodegenerative diseases, offering prospects for earlier intervention and management.

The technique, called Nano-QuIC (Nanoparticle-enhanced Quaking-Induced Conversion), has been devised by researchers at University of Minnesota (Minneapolis, MN, USA) and significantly improves the performance of advanced protein-misfolding detection methods like the NIH Rocky Mountain Laboratories' Real-Time Quaking-Induced Conversion (RT-QuIC) assay. With Nano-QuIC, the detection times are drastically cut down from around 14 hours to a mere four hours, while the sensitivity is heightened tenfold. This rapid and highly precise detection technique is particularly critical for comprehending and controlling the transmission of CWD, a disease rampant among deer in North America, Scandinavia, and South Korea. The scientists are hopeful that Nano-QuIC could eventually be instrumental in detecting protein-misfolding diseases in humans, particularly Parkinson's, Creutzfeldt-Jakob Disease, Alzheimer's, and ALS.

“This research mainly focuses on CWD in deer, but ultimately our goal is to expand the technology for a broad spectrum of neurodegenerative diseases, Alzheimer’s and Parkinson’s being the two main targets,” said Sang-Hyun Oh, senior co-author of the paper and a professor in the College of Science and Engineering. “Our vision is to develop ultra-sensitive, powerful diagnostic techniques for a variety of neurodegenerative diseases so that we can detect biomarkers early on, perhaps allowing more time for the deployment of therapeutic agents that can slow down the disease progression. We want to help improve the lives of millions of people affected by neurodegenerative diseases.”

“Testing for these neurodegenerative diseases in both animals and humans has been a major challenge to our society for decades,” said Peter Larsen, senior co-author of the paper and an assistant professor in the College of Veterinary Medicine. “What we’re seeing now is this really exciting time when new, next generation diagnostic tests are emerging for these diseases. The impact that our research has is that it’s greatly improving upon those next generation tests, it’s making them more sensitive and it’s making them more accessible.”

Related Links:
University of Minnesota 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Rickettsia Conorii Assay
RICKETTSIA CONORII ELISA

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.