We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New Device That Detects Cancer Cells Could Help Avoid Invasive Biopsy Surgeries

By LabMedica International staff writers
Posted on 28 Feb 2023
Print article
Image: The Static Droplet Microfluidic device rapidly detects circulating tumor cells in the bloodstream (Photo courtesy of UTS)
Image: The Static Droplet Microfluidic device rapidly detects circulating tumor cells in the bloodstream (Photo courtesy of UTS)

Cancer is a major contributor to illness and death, and those with suspected cancer may need surgery for a diagnosis, especially for liver, colon or kidney tumors. Unfortunately, biopsies can be uncomfortable, costly, and increase the risk of complications due to surgery. To resolve this problem, researchers have created a new device that can detect and analyze cancer cells from blood samples. This could eliminate the need for a biopsy surgery, as well as allow doctors to monitor treatment progress more accurately.

Researchers from the University of Technology Sydney (UTS, Sydney, Australia) have developed the Static Droplet Microfluidic device, which can quickly detect tumor cells that have migrated away from a primary tumor and into the bloodstream. The device utilizes a distinctive metabolic signature of cancer to separate tumor cells from regular blood cells. After tumor cells are located with the device, they can then be studied genetically and molecularly to support diagnosis and classification of the cancer, allowing for more personalized treatment options.

Circulating tumor cells are a precursor of metastasis, which is responsible for approximately 90% of all cancer-related deaths. Studying these cells may offer greater understanding of the biology behind cancer metastasis, which can help in the development of new treatments. The current liquid biopsy solutions are slow, expensive, and require specialist operators, restricting their use in clinical settings. This new technology is designed to be integrated into research and clinical labs without needing expensive and complex equipment or a trained operator, making it practical and cost-effective for doctors to diagnose and monitor cancer patients.

“Managing cancer through the assessment of tumor cells in blood samples is far less invasive than taking tissue biopsies. It allows doctors to do repeat tests and monitor a patient’s response to treatment,” said Professor Majid Warkiani from the UTS School of Biomedical Engineering.

Related Links:
University of Technology Sydney 

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
Unstirred Waterbath
HumAqua 5

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.