We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Revolution in Rapid Testing: A New Generation of Programmable Lateral Flow Assays

By LabMedica International staff writers
Posted on 25 Oct 2021
Print article
Image: The fully assembled liquid flow assay (Photo courtesy of Allison Carter)
Image: The fully assembled liquid flow assay (Photo courtesy of Allison Carter)
Researchers have modified and enhanced the commonly used lateral flow assay method by introducing a technique to control the rate of capillary flow, which enables the test strip to carry out multistep chemical reactions following a programmed sequence.

Lateral flow assays (LFTs) have a wide array of applications and can be used to analyze a variety of samples such as urine, blood, saliva, sweat, serum, and other fluids. They are currently used by clinical laboratories, hospitals, and physicians for quick and accurate tests for specific target molecules and gene expression. Other uses for lateral flow assays are food and environmental safety and veterinary medicine for chemicals, diseases, and toxins. LFTs are also used for disease identification, but the most common LFT is the home pregnancy test.

A weakness of the conventional LFA method is that the physical characteristics of capillary flow prevents them from being able to coordinate complex processes that include the application of multiple reagents in a specific sequence with specific delays in between.

In response to this problem, investigators at the Georgia Institute of Technology (Atlanta, USA) recently described a way to control capillary flow by imprinting roadblocks on the flow path with water-insoluble ink and using the gradual formation of a void between a wetted paper and a sheath polymer tape to create timers. Timers were drawn at strategic nodes to hold the capillary flow for a desired period and thereby enabled multiple liquids to be introduced into multistep chemical reactions following a programmed sequence. By modifying the imprint geometry, the investigators could set the time required for a void to form and effectively created timers that blocked capillary flow for a desired duration.

The investigators employed the new technique to develope (i) an LFA with built-in signal amplification to detect human chorionic gonadotropin with an order of magnitude higher sensitivity than the conventional assay and (ii) a device to extract DNA from bodily fluids without relying on laboratory instruments. The latter device has potential for use as a rapid test for detection of Covid-19 infection.

"These tests have been extremely popular for years, mainly because they are so simple to use. You do not send anything to the lab or clinic because these tests do not require any external equipment to operate. This is an advantage," said senior author Dr. Fatih Sarioglu, assistant professor of electrical and computer engineering at the Georgia Institute of Technology. "But there also is a disadvantage. There are limitations to what they can do. By strategically imprinting these timers, we can program the assays to coordinate different capillary flows. That enables multiple liquids to be introduced, and multistep chemical reactions, with optimal incubation times - so, we can perform complex, automated assays that otherwise would normally have to be performed in laboratories. This takes us beyond the conventional LFA."

"We believe this flow technology research will have widespread impact," said Dr. Sarioglu. "This kind of dipstick test is so commonly used by the public for biomedical testing, and now it can be translated into other applications that we do not traditionally consider to be cut out for these simple tests."

The enhanced LFA technique was described in the October 1, 2021, online edition of the journal Science Advances.

Related Links:
Georgia Institute of Technology

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Fixed Speed Tube Rocker
GTR-FS

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.