We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Whole-Exome Sequencing Evaluates Fetal Structural Anomalies

By LabMedica International staff writers
Posted on 12 Feb 2019
Print article
Image: A diagram of whole-exome sequencing to identify genetic variants (Photo courtesy of NGXBIO).
Image: A diagram of whole-exome sequencing to identify genetic variants (Photo courtesy of NGXBIO).
In about 3% of pregnancies, ultrasound imaging will reveal a significant fetal physical anomaly and knowing the cause of the anomaly can help doctors and parents be better prepared, both during the pregnancy and after delivery.

The current standard of care is to obtain a sample of amniotic fluid and perform karyotyping to determine if the fetus has the right number of chromosomes and if small regions are missing, but this test can only pinpoint the underlying cause for about 40% of anomalies found on ultrasound, leaving the majority of families in the dark.

A team of scientists collaborating with the Columbia University Medical Center (New York, NY, USA) enrolled 234 pregnant women with abnormal ultrasound findings but whose standard genetic tests were negative. The team used whole-exome sequencing to identify genetic variants that indicated an underlying cause (diagnostic genetic variants) and genetic variants that met the criteria of bioinformatic signatures that had previously been described to be significantly enriched among diagnostic genetic variants.

DNA samples from 234 (45%) eligible trios were used for analysis of the primary outcome. By use of trio sequence data, the scientists identified diagnostic genetic variants in 24 (10%) families. Mutations with bioinformatic signatures that were indicative of pathogenicity but with insufficient evidence to be considered diagnostic were also evaluated; 46 (20%) of the 234 fetuses assessed were found to have such signatures.

Since the science surrounding genomic analysis is still developing, some of the gene sequence patterns had been associated, but not definitively linked, to the specific developmental abnormality. Clinicians need to balance their desire to give patients definitive answers against the sometimes murky state of genomic science. A team of multidisciplinary experts such as clinical and molecular geneticists, genetic counselors, developmental biologists, and maternal fetal medicine specialists, are needed to ensure an accurate interpretation of the new test results.

Ronald Wapner, MD, director of reproductive genetics, a professor of obstetrics and gynecology, and co-author of the study, said, “Based on our findings, whole exome sequencing could serve as a valuable addition to standard prenatal genetic tests, with the potential to improve perinatal care for infants with genetic conditions and ease parents' fears by offering a clear diagnosis.” The study was published on January 31, 2019, in the journal The Lancet.

Related Links:
Columbia University Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.