We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Deep Sequencing of Circulating Tumor DNA Detects Cancers Early

By LabMedica International staff writers
Posted on 28 Aug 2017
A recently developed blood test utilizes targeted error correction sequencing (TEC-Seq) of circulating tumor DNA to detect early-stage cancers.

The detection and analysis of cell-free DNA in patients’ blood are becoming increasingly accepted for cancer diagnosis. More...
However, this approach has generally been applied for the monitoring of patients with existing tumors. It has not been useful for early diagnosis of cancer because of insufficient sensitivity to detect very small tumors that only shed minute quantities of DNA into the blood, as well as difficulties with identifying cancer-associated genetic changes without knowing what mutations are present in the primary tumor.

To address these limitations, investigators at Johns Hopkins University (Baltimore, MD, USA) developed the TEC-Seq approach, which allowed ultrasensitive direct evaluation of sequence changes in circulating cell-free DNA using massively parallel sequencing. The TEC-Seq deep sequencing method, which reads the DNA base code 30,000 times, was used to screen patients' blood samples for mutations within 58 genes widely linked to various cancers.

Analysis of plasma from 44 healthy individuals identified genomic changes related to clonal hematopoiesis in 16% of asymptomatic individuals but no alterations in driver genes related to solid cancers. Evaluation of 200 patients with colorectal, breast, lung, or ovarian cancer detected somatic mutations in the plasma of 71, 59, 59, and 68%, respectively, of patients with stage I or II disease. Genomic sequencing of tumors removed from 100 of the 200 patients revealed that 82 had mutations in their tumors that correlated with the genetic alterations found in the blood.

"The challenge was to develop a blood test that could predict the probable presence of cancer without knowing the genetic mutations present in a person's tumor," said senior author Dr. Victor Velculescu, professor of oncology at Johns Hopkins University. "This study shows that identifying cancer early using DNA changes in the blood is feasible and that our high accuracy sequencing method is a promising approach to achieve this goal."

The TEC-Seq study was published in the August 16, 2017, online edition of the journal Science Translational Medicine.

Related Links:
Johns Hopkins University


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.