We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomarker Could Predict Immunotherapy Response in Liver Cancer

By LabMedica International staff writers
Posted on 25 Oct 2024
Print article
Image: Low NBR1 levels in hepatic stellate cells enhance interferon signaling in human hepatocellular carcinoma (Photo courtesy of Moscat and Diaz-Meco labs)
Image: Low NBR1 levels in hepatic stellate cells enhance interferon signaling in human hepatocellular carcinoma (Photo courtesy of Moscat and Diaz-Meco labs)

Until recently, patients diagnosed with hepatocellular carcinoma had limited treatment options, with existing therapies extending life by only a few months. Immunotherapy has emerged as a new alternative for these patients, potentially extending their lives by up to two years. However, not all patients respond to immunotherapy, and only a small fraction achieve long-term remission, making it difficult for clinicians to predict who might benefit. Now, a preclinical study suggests it may soon be possible to identify which patients with hepatocellular carcinoma would respond favorably to immunotherapy.

In this study, investigators at Weill Cornell Medicine (New York, NY, USA) sought to uncover biomarkers and therapeutic targets by investigating the liver’s healing mechanisms and how they can lead to cancer. The study offers fresh insights into two proteins, p62 and NBR1, and their contrasting roles in modulating the interferon response in hepatic stellate cells, which are vital to the liver's immune response against tumors. Previous research indicated that levels of the tumor-suppressing protein p62 are permanently reduced in patients who develop hepatocellular carcinoma. The new findings revealed that p62 typically fosters an immune response by activating a protein known as STING, which displaces the immune-suppressing NBR1, thereby initiating an immune response that targets tumor cells. Conversely, NBR1 facilitates the degradation of STING and inhibits the immune response. Removing NBR1 from hepatic stellate cells in mice with hepatocellular carcinoma restored the immune response and reduced tumor size, even when p62 levels remained low.

Thus, the study findings, published in Molecular Cell, indicated that elevated NBR1 levels in these specialized cells could identify patients who are unlikely to respond to immunotherapy. Additionally, strategies aimed at reducing NBR1 levels were shown to diminish tumors in animal models, indicating a potential new treatment approach for patients who do not respond to immunotherapy. The research team is now exploring the development of a therapy that would degrade NBR1 in patients, preventing it from interacting with STING. Their objective is to reactivate the immune system and enhance the efficacy of immunotherapy. Drugs that activate STING are also being developed and may offer another strategy to boost the immune response in patients with hepatocellular carcinoma. Furthermore, the team plans to investigate whether reducing NBR1 could help prevent the metastasis of various cancer types or stop tumors from becoming resistant to treatment. They intend to continue their exploration of the pathways that regulate the liver's immune response.

“If we don’t fully comprehend the molecular mechanisms regulating these processes, immunotherapy will not progress, and we won't be able to understand why it works in some patients and not others,” said co-principal investigator Dr. Maria Diaz-Meco, the Homer T. Hirst Professor of Oncology in Pathology and a member of the Meyer Cancer Center at Weill Cornell Medicine.

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Hematology Analyzer
XS-500i
New
Centrifuge
Mikro 200

Print article

Channels

Microbiology

view channel
Image

POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection

Meningitis is an inflammation of the membranes surrounding the brain and spinal cord. Pathogens typically enter the body through the respiratory tract and spread via the bloodstream. The infection can... Read more

Pathology

view channel
Image: The unique AI tool predicts cancer prognoses and responses to treatment (Photo courtesy of Shutterstock)

AI Tool Combines Data from Medical Images with Text to Predict Cancer Prognoses

The integration of visual data (such as microscopic and X-ray images, CT and MRI scans) with textual information (like exam notes and communications between doctors of different specialties) is a crucial... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The investment is in line with Danaher’s aim to accelerate the transition to precision medicine with AI-enabled diagnostics

Danaher Partners with Healthcare AI Company Innovaccer on Novel Digital and Diagnostic Solutions

Danaher Diagnostics LLC and Danaher Ventures LLC, two subsidiaries of Danaher Corporation (Washington, DC, USA), has formed an investment partnership with healthcare artificial intelligence (AI) company... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.