We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Data-Driven Testing Strategy Could Enable Fast Turnaround of COVID-19 Test Results for Healthcare Workers

By LabMedica International staff writers
Posted on 27 Apr 2021
Print article
Image: Proposed testing approach for healthcare worker screening (Photo courtesy of The Journal of Molecular Diagnostics)
Image: Proposed testing approach for healthcare worker screening (Photo courtesy of The Journal of Molecular Diagnostics)
A new methodology for testing pooled samples that maximizes the proportion of samples resolved after a single round of testing can speed up COVID-19 test results for healthcare workers.

Investigators at University of Manchester (Manchester, UK) have developed a COVID-19 testing strategy that maximizes the proportion of negative results after a single round of testing, allowing prompt notification of results. The method also reduces the need for increasingly limited test reagents, as fewer additional tests are required.

Fast turnaround of COVID-19 test results for healthcare workers is critical. There is an urgent need to reduce the spread of COVID-19 transmission in hospitals and care facilities and to maintain adequate levels of staffing. Group testing strategies with pooled samples have been proposed to increase capacity; however, the currently used strategies are slow.

Traditional Dorfman sequential (DS) pooling combines multiple samples and, if a pool test returns positive, all of the constituent samples undergo further testing. In a healthcare setting, this means that even individuals who ultimately test negative for COVID-19 will have to isolate. The investigators developed a non-adaptive combinatorial (NAC) pooling approach that tests the same sample in several simultaneously assayed pools. The algorithm assumes initially that each sample is positive. It then attempts to disprove this assumption by finding a well in which the sample has been placed that has tested as negative. Then another algorithm is used to find positive wells that contain a single sample on the list of the remaining potentially positive samples. Indeterminate samples are retested.

To establish a suitable limit of detection for pooling, nasopharyngeal samples of known SARS-CoV-2 status were placed in two pools, each containing 14 SARS-CoV-2 negative samples and one SARS-CoV-2 positive sample, with the positive samples at differing viral loads. Pooling matrices were generated for 700, 350, and 250 samples, with each sample assigned to 2, 4, and 5 wells, respectively. The samples were also tested in a DS testing scheme. The efficacy of each matrix was tested under different SARS-CoV-2 prevalence levels of 0.1%, 3%, 7%, and 10% of the population.

All NAC matrices performed well at low prevalence levels, with an average of 585 tests saved per assay in the 700 sample matrix. In simulations of low-to-medium prevalence levels (0.1% – 3%), which is the prevalence expected in an asymptomatic healthcare worker population, all the NAC matrices required fewer retests than the DS testing scheme. However, as the population prevalence increased, the performance of each matrix deteriorated. The matrices and system to decode the results are freely available and laboratories can choose the matrix that best suits their current population prevalence and sample size, facilitating a context-specific, relatively low cost data-driven testing approach.

“Using the method we have developed, any laboratory could adapt their testing scheme based on the current throughput and the current prevalence of infection in the population, facilitating a data-driven testing strategy,” explained lead investigators Graeme Black, DPhil, and John Henry McDermott, MD, both from the Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK. “Many high-throughput testing schemes for SARS-CoV-2 detection have been developed over the past year. We illustrate the potential power that adaptable automated, innovative mathematical approaches have to increase COVID-19 diagnostic capability in a safe manner. Such an approach could reach far greater numbers, save lives, and be delivered in a sustainable way. Undoubtedly, this has considerable relevance to other future population-based screening approaches.”

Related Links:
University of Manchester

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.