We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





First-Ever Highly Sensitive Antibody Tests Could Detect Infection with All Known Human Coronaviruses, Including New SARS-CoV-2 Variants

By LabMedica International staff writers
Posted on 19 Feb 2021
Scientists have set the stage for the development of highly sensitive antibody tests for infection with all known human coronaviruses, including new variants of SARS-CoV-2.

Scientists at the Center for Infection and Immunity (CII) at Columbia University Mailman School of Public Health (New York, NY, USA) have developed the HCoV-Peptide consisting of three million immune markers on a glass chip and covering proteins of all known human coronaviruses, including the SARS-CoV-2. More...
In collaboration with a team at the SunYat-Sen University (Guangzhou, China), the CII researchers have identified 29 immune signatures specific to SARS-CoV-2. These genetic fingerprints (peptides) provide the blueprint for tests that will be used for diagnostics and surveillance. Current antibody tests for SARS-CoV-2 infection may generate false-positive results because of cross-reactivity with seasonal coronaviruses responsible for the common cold, as well as MERS-CoV and SARS-CoV-1.

To develop the HCoV-Peptide array, the researchers first analyzed blood samples taken from individuals with asymptomatic, mild, or severe SARS-CoV-2 infections, and controls including healthy individuals and those exposed to SARS-CoV-1 and seasonal coronaviruses. An analysis of all approximately 170,000 peptides related to known human coronaviruses yielded 29 peptides with the strongest and most specific reactivity with SARS-CoV-2. Next, they validated their test using a second set of blood samples, including those from confirmed cases of SARS-CoV-2, those with antibodies to other human coronaviruses, and healthy individuals. The new test has a 98% specificity and sensitivity. Immune signatures were present from eight days after onset of COVID-19 symptoms to as long as six to seven months after infection.

“This work will allow us and others to build inexpensive, easy-to-use blood tests that can provide data for exposure as well as immunity,” said author Nischay Mishra, PhD, assistant professor of epidemiology at the Columbia Mailman School.

Related Links:
Columbia University Mailman School of Public Health
SunYat-Sen University



Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Hemodynamic System Monitor
OptoMonitor
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Illustration of a cross-section of a blood vessel with red blood cells, white blood cells, and fragments of DNA (Photo Courtesy of UC San Diego/Adobe Firefly)

Microbial DNA Signature in Blood Plasma Differentiates Two Liver Cancer Types

Determining whether a cancerous tumor originated in a given location or spread from another organ is critical for guiding diagnosis and treatment decisions. When the primary tumor site cannot be identified,... Read more

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
Image: (A) Normal skin and (B) possible pathology in ALS skin (Photo courtesy of Biomolecules and Biomedicine (2025) DOI: 10.17305/bb.2025.12100)

Skin-Based Biomarkers to Enable Early Diagnosis of Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that damages motor neurons in the brain and spinal cord, causing muscle weakness, paralysis, and death within three to five... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.