We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





New Process Analyzes Predominant SARS-CoV-2 Mutations as Well as Possible New Virus Variants

By LabMedica International staff writers
Posted on 21 Jan 2021
A new and more efficient process has been developed to determine not only predominant SARS-CoV-2 mutations but also minor occurring mutations in the virus population which might become eventually new strains.

The Click Tech Single Strain Mutation Mapping Kit for SARS-CoV-2 developed by baseclick GmbH (Munich, Germany), together with “long-read” sequence methods, such as those provided by Pacific Biosciences (Menlo Park, CA, USA) allows an exact genomic assignment and an assessment of the frequency of newly-emerging virus variants in the population. More...
With the analysis method, it is also possible to identify all SARS-CoV-2 mutations within a COVID-19 patient, including those over the course of the disease.

The rapid spread of the newly emerging SARS-CoV-2 virus variant B.1.1.7 in the UK and other countries shows changes in the genome of the SARS-CoV-2 virus can lead to new biological properties. Most of the approximately 12,000 mutations in the genome of the SARS-CoV-2 virus that have been identified since February 2020 so far did not change the biological properties of the virus. However, some of the almost 4,000 mutations that have been identified in the spike protein (S-Protein) have influenced the biological properties infectivity, disease progression and immunogenicity of the mutant SARS-CoV-2 virus. It is increasingly important to contain and manage the infection progress not only by detection of aSARS-CoV-2 infection e.g. by PCR, but also to carry out a genetic analysis of the infecting strain.

Currently, genetic analysis of SARS-CoV-2 is based on the Amplicon methods. The genome part responsible for infectivity, disease progression and immunogenicity is dissected into small sections and subsequently sequenced. Mutations and thus, possible new virus variants are determined using mathematical methods. In contrast, baseclick offers a kit that generates first a 1:1 cDNA copy of the entire 30,000 base-long SARS-CoV-2 mRNA genome, irrespective of the strain involved. Secondly, overlapping genomic fragments up to 4.2 kb are amplified of critical S-E-M-N coding genome part. When coupled with existing long-read NGS technologies, these long DNA fragments can even be used to precisely distinguish and characterize multiple SARS-CoV-2 variants. This can be used to predict e.g. genome plasticity, presents of multiple strains in a patient, mutation accumulation during infection in patients, etc.

“It is good news that baseclick has now developed a highly efficient analysis method to analyze SARS-CoV-2 mutations since the increased occurrence of new SARS-CoV-2 virus strains,” said baseclick CEO Dr. Thomas Frischmuth. “With our sequencing kit, the genome section responsible for infectivity, disease progression and immunogenicity is directly analyzed and mutations can be assigned directly without any intermediate mathematical steps.”

“Research into the SARS-CoV-2 mutations and emerging virus strains is just beginning. More knowledge about this will support vaccine development, therapies and the management of this pandemic, and we are making a new and decisive contribution to this,” added Dr. Frischmuth.

Related Links:
baseclick GmbH
Pacific Biosciences



Gold Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.