We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Instrument-Free, Handheld Diagnostic Test for SARS-CoV-2 to Provide Smartphone-Read Electrochemical Readout

By LabMedica International staff writers
Posted on 17 Dec 2020
An instrument-free, synthetic biology-based molecular diagnostics platform could be adapted to work on a simple paper strip COVID-19 test or to provide an electrochemical readout that can be read with a mobile phone.

The INSPECTR technology (formerly known as DROP) from Sherlock Biosciences (Cambridge, MA, USA) uses synthetic biology to enable the creation of instrument-free diagnostic tests that can be conducted at home, at room temperature. More...
INSPECTR, which stands for Internal Splint-Pairing Expression Cassette Translation Reaction, consists of a DNA hybridization-based sensor that can be easily programmed to detect target nucleic acids (DNA or RNA) with single base pair specificity, coupled with a paper-based synthetic gene network that translates the sensor’s detection into a bioluminescent signal that is easily visualized or captured on instant film. Crucially, this process can be done at room temperature and does not require any instrumentation, unlike other currently available methods. By decentralizing testing, INSPECTR has the potential to dramatically change health outcomes for people all over the world, mitigating the spread of disease and helping patients make vital health decisions sooner. Sherlock has now received a grant of USD 5 million from the Bill & Melinda Gates Foundation to continue to advance INSPECTR.

“In addition to advancing our INSPECTR platform development to be as sensitive as gold-standard PCR tests, the funding will support our development of an over-the-counter disposable product, similar to an at-home pregnancy test, that can be used to detect SARS-CoV-2, the virus that causes COVID-19. Pending approval, we are on track to launch this product in mid-2021,” said William J. Blake, chief technology officer of Sherlock Biosicences.

“By creating the very first diagnostic tests that do not require complex instruments and can be deployed anywhere, especially in low-resource settings, Sherlock is poised to make a wide-ranging and powerful impact on health outcomes,” said James J. Collins, co-founder and board member of Sherlock Biosciences and Termeer Professor of Medical Engineering and Science for MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering. “We are delighted by the support of the Gates Foundation to develop these tests, which we believe will contribute to earlier disease detection, faster intervention and the elimination of epidemics worldwide.”

Related Links:
Sherlock Biosciences


Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.