We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App





Instrument-Free, Handheld Diagnostic Test for SARS-CoV-2 to Provide Smartphone-Read Electrochemical Readout

By LabMedica International staff writers
Posted on 17 Dec 2020
Print article
Image: The INSPECTR™ technology (formerly known as DROP), enables highly sensitive molecular diagnostic tests to be performed at room temperature and without the need for lab equipment (Photo courtesy of Wyss Institute at Harvard University.)
Image: The INSPECTR™ technology (formerly known as DROP), enables highly sensitive molecular diagnostic tests to be performed at room temperature and without the need for lab equipment (Photo courtesy of Wyss Institute at Harvard University.)
An instrument-free, synthetic biology-based molecular diagnostics platform could be adapted to work on a simple paper strip COVID-19 test or to provide an electrochemical readout that can be read with a mobile phone.

The INSPECTR technology (formerly known as DROP) from Sherlock Biosciences (Cambridge, MA, USA) uses synthetic biology to enable the creation of instrument-free diagnostic tests that can be conducted at home, at room temperature. INSPECTR, which stands for Internal Splint-Pairing Expression Cassette Translation Reaction, consists of a DNA hybridization-based sensor that can be easily programmed to detect target nucleic acids (DNA or RNA) with single base pair specificity, coupled with a paper-based synthetic gene network that translates the sensor’s detection into a bioluminescent signal that is easily visualized or captured on instant film. Crucially, this process can be done at room temperature and does not require any instrumentation, unlike other currently available methods. By decentralizing testing, INSPECTR has the potential to dramatically change health outcomes for people all over the world, mitigating the spread of disease and helping patients make vital health decisions sooner. Sherlock has now received a grant of USD 5 million from the Bill & Melinda Gates Foundation to continue to advance INSPECTR.

“In addition to advancing our INSPECTR platform development to be as sensitive as gold-standard PCR tests, the funding will support our development of an over-the-counter disposable product, similar to an at-home pregnancy test, that can be used to detect SARS-CoV-2, the virus that causes COVID-19. Pending approval, we are on track to launch this product in mid-2021,” said William J. Blake, chief technology officer of Sherlock Biosicences.

“By creating the very first diagnostic tests that do not require complex instruments and can be deployed anywhere, especially in low-resource settings, Sherlock is poised to make a wide-ranging and powerful impact on health outcomes,” said James J. Collins, co-founder and board member of Sherlock Biosciences and Termeer Professor of Medical Engineering and Science for MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering. “We are delighted by the support of the Gates Foundation to develop these tests, which we believe will contribute to earlier disease detection, faster intervention and the elimination of epidemics worldwide.”

Related Links:
Sherlock Biosciences

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS-CoV-2 RT-PCR Assay
Reliance SARS-CoV-2 RT-PCR Assay Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.