Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

By LabMedica International staff writers
Posted on 18 Apr 2025

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. More...

They are also integral in forensic investigations and biosensing. Fluorophores have been utilized by scientists to highlight cells and tissues under specialized microscopes, making even the smallest details visible. These molecules also play a crucial role in tracking diseases, studying cellular functions, and assisting in the diagnosis of various health conditions. Now, researchers have developed tiny, clay-based materials known as fluorescent polyionic nanoclays, which can be tailored for numerous applications, including improving medical tests.

These fluorescently labeled nanoclays, created by researchers at the University of Missouri-Columbia (Columbia, MO, USA), exhibit an exceptional brightness of 7,000 brightness units when normalized by volume, marking the highest levels ever recorded for a fluorescent material. This increased brightness makes these materials highly effective for sensitive optical detection methods, leading to stronger analytical signals and improved detection. These enhancements open up new possibilities for advanced sensors and contrast agents in medical imaging. Published in Chemistry of Materials, the study emphasizes the versatility of these nanoclays, which can be adapted to a variety of applications. They have a high degree of functionality, allowing for precise control over the number and type of fluorescent molecules attached to their surfaces. This capability provides a flexible platform where the optical and physicochemical properties of the nanoclays can be finely tuned by selecting and attaching specific molecules.

One of the key features of these nanoclays is their ability to be easily customized, making them suitable for diverse applications in different fields. Initial tests suggest that these materials are safe for medical use, potentially enabling doctors to see inside the body with greater clarity. Although fluorescence remains the primary focus of current research, the team plans to further explore the customization of these nanoclays by incorporating other molecules, such as amino acids, antibodies, DNA aptamers, and ligands for selective metal binding. This opens up opportunities for applications beyond just imaging and sensing. These materials could also play a significant role in drug delivery, improving medical tests, monitoring diseases, and aiding in cancer treatment.


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Dormant tumor cells evade imaging tests and may later reactivate to spread metastatic breast cancer (Photo courtesy of David A. Litman/Shutterstock)

MRD Testing Can Identify Breast Cancer Survivors at Higher Risk of Recurrence

Breast cancer survival rates continue to improve, but recurrence remains incurable and affects around 30% of patients. Some subtypes, like triple negative and HER2+, relapse within years, while ER+ cancers... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.