We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Gene Therapy Technique Cures Cystic Fibrosis in Culture Model

By LabMedica International staff writers
Posted on 31 Jul 2009
Print article
A gene therapy technique based on a parainfluenza virus vector was used to successfully cure an in vitro model of cystic fibrosis.

Cystic fibrosis (CF) lung disease results from reduced airway surface hydration leading to decreased mucus clearance that precipitates bacterial infection and progressive obstructive lung disease. CF is a genetic disease, and the mutant protein is a chloride ion channel (CFTR) that normally regulates ion and fluid transport on the airway surface.

Investigators at the University of North Carolina (Chapel Hill, USA) reasoned that the most appropriate means for delivering a gene to lung tissue was a virus that specialized in invading the lungs. They created an in vitro model of CF by growing cultures of ciliated surface airway epithelium (CF HAE) cells obtained from a CF patient. The cultures were then treated with parainfluenza virus that had been genetically engineered to carry the normal CFTR gene.

Results published in the July 21, 2009, online edition of the journal PLoS Biology revealed that the vector delivered CFTR to more than 60% of airway surface epithelial cells, and the expression of CFTR protein in the CF HAE cells was approximately 100-fold higher than endogenous levels found in normal HAE cells.

By titering the amount of CFTR gene in the vector, the investigators were able to determine that uptake of the gene by 25% of the cells was sufficient to restore normal function to the entire culture.

"We discovered that if you take a virus that has evolved to infect the human airways, and you engineer a normal CFTR gene into it, you can use this virus to correct all of the hallmark CF features in the model system that we used,” said senior author Dr. Raymond J. Pickles, associate professor of microbiology and immunology at the University of North Carolina. "This is the first demonstration in which we have been able to execute delivery in an efficient manner. When you consider that in past gene therapy studies, the targeting efficiency has been somewhere around 0.1% of cells, you can see this is a giant leap forward.”

"We have not generated a vector that we can go out and give to patients now,” said Dr. Pickles, "but these studies continue to convince us that a gene replacement therapy for CF patients will some day be available in the future.”

Related Links:
University of North Carolina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.