We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





New Type of COVID-19 Test Offers Advantages over Lateral Flow Tests

By LabMedica International staff writers
Posted on 14 Apr 2022

Rapid antigen tests can quickly and conveniently tell a person that they are positive for Covid-19. More...

However, because the antibody-based tests aren’t very sensitive, they can fail to detect early infections with low viral loads. Now, a team of researchers has developed a rapid test that relies on molecularly imprinted polymer nanoparticles, rather than antibodies, for detection.

The gold standard for COVID-19 diagnosis remains the reverse transcription-polymerase chain reaction (RT-PCR). Although this test is highly sensitive and specific, it takes 1-2 days to get a result, is expensive and requires special lab equipment and trained personnel. In contrast, rapid antigen tests are fast (15-30 minutes), and people can take them at home with no training, but they lack sensitivity, sometimes resulting in false negatives. Also, the tests use antibodies against SARS-CoV-2 for detection, which can’t withstand wide ranges of temperature and pH. The research team at Newcastle University (Newcastle, Tyne and Wear, UK) wanted to make a low-cost, rapid, robust and highly sensitive COVID-19 test that uses molecularly imprinted polymer nanoparticles (nanoMIPs) instead of antibodies.

To make nanoMIPs, the researchers began by attaching a peptide from the SARS-CoV-2 spike protein to a solid support. Then, they added nanoparticle building blocks and polymerized them around the peptide, creating nanoparticles with a binding site specific for the coronavirus spike protein. They isolated the nanoparticles that bound most strongly to the peptide and attached them to a screen-printed electrode. After showing that the nanoMIPs could bind SARS-CoV-2, they added the electrode to a small 3D-printed device that measured changes in thermal resistance that occurred upon binding.

When the team added samples from seven patient nasopharyngeal swabs to the device, the liquid flowed over the electrode, and the researchers detected a change in thermal resistance for samples that had previously tested positive for COVID-19 by RT-PCR. The test required only 15 minutes, and preliminary results indicated that it could detect a 6,000-times lower amount of SARS-CoV-2 than a commercial rapid antigen test. Unlike antibodies, the nanoMIPs withstood warm temperatures - which could give the test a longer shelf life in hot climates - and acidic pH - which might make it useful for monitoring SARS-CoV-2 in wastewater. However, to prove that the test has a lower false negative rate than existing rapid antigen tests, it must be tested on many more patient samples, according to the researchers.

“We develop a new type of COVID-19 test which has many advantages over current lateral flow tests. For example, lateral flow tests use biological antibodies to trap and detect the Covid-19 virus, whereas we use a synthetic alternative known as polymer antibodies. This allows for a test which is as fast - 15 mins, and cheap as a lateral flow test but can detect 6000-times smaller amounts of the COVID-19 virus,” said Dr. Marloes Peeters, Senior Lecturer at Newcastle University’s School of Engineering. “Consequently, this will improve test accuracy, particularly for asymptomatic or pre-symptomatic individuals. Moreover, synthetic antibodies are very robust which means the tests have a longer shelf-life, can be used in hot climates with no issues and will not produce false-positive results in acidic media, such as soft drinks.”

“In the future, we hope to further validate our polymer antibody by testing more patient samples, including saliva samples and samples from the omicron variant. Additionally, the polymer antibodies can be easily adapted for any new COVID-19 variants or other emerging pathogens,” added Dr. Peeters.

Related Links:
Newcastle University 


Gold Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Collection and Transport System
PurSafe Plus®
New
Gold Member
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.