We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Stem Cell Therapy Cures Friedreich's Ataxia in Mouse Model

By LabMedica International staff writers
Posted on 09 Nov 2017
Stem cell therapy was used to cure Friedreich's ataxia in a mouse model of the fatal degenerative disease.

Friedreich’s ataxia (FRDA) is an incurable autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin due to a mutation that causes repetition of the GAA nucleotide segment of the FXN gene. More...
Reduced frataxin levels cause a degenerative neuromuscular disorder that initially impairs motor function, such as gait and coordination, but can lead to scoliosis, heart disease, vision loss, and diabetes. While cognitive function is not affected, the disease is progressively debilitating, and ultimately requires full-time use of a wheelchair. Currently there is no treatment for FRDA.

Investigators at the University of California, San Diego (USA) worked with the YG8R mouse model that closely approximates human FRDA. This transgenic mouse model expresses two mutant human FXN transgenes, and the animals exhibit the resulting progressive neurological degeneration and muscle weakness.

The investigators treated the YG8R mice with a single injection of wild-type mouse hematopoietic stem and progenitor cells (HSPCs).

They reported in the October 25, 2017, online edition of the journal Science Translational Medicine that transplanted HSPCs engrafted and then differentiated into microglia in the brain and spinal cord and into macrophages in the dorsal root ganglia, heart, and muscle of the YG8R FRDA mice.

The therapy induced transfer of wild-type frataxin and Cox8 mitochondrial proteins from HSPC-derived microglia/macrophages to FRDA mouse neurons and muscle myocytes. The treatment prevented development of muscle weakness and locomotor deficits as well as degeneration of large sensory neurons in the dorsal root ganglia. Mitochondrial capacity was improved in brain, skeletal muscle, and heart.

"Transplantation of wildtype mouse HSPCs essentially rescued FRDA-impacted cells," said senior author Dr. Stephanie Cherqui, associate professor of pediatrics at the University of California, San Diego. "Frataxin expression was restored. Mitochondrial function in the brains of the transgenic mice normalized, as did in the heart. There was also decreased skeletal muscle atrophy."

Related Links:
University of California, San Diego


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.