We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Gene Mutation Causes Devastating Mitochondrial Diseases

By LabMedica International staff writers
Posted on 19 Sep 2013
A novel disease gene has been identified in which mutations cause rare but devastating genetic diseases known as mitochondrial disorder.

Mitochondrial diseases are caused by mutations in either mitochondrial DNA or in genes in the nucleus that encode for proteins that function in the mitochondria. More...


Scientists at the Loyola University Stritch School of Medicine (Maywood, IL, USA) and their multi-institute collaborators performed a battery of genetic tests to identify a nuclear gene that encodes for a protein called F-Box and Leucine-Rich Repeat Protein 4 (FBXL4).

They found that mutations of this FBXL4 gene lead to either truncated or altered forms of the protein. This results in cells having less mitochondrial DNA, decreased mitochondrial membrane potential and a faulty process in cell metabolism called oxidative phosphorylation. The study also proved that the FBXL4 protein is located exclusively in mitochondria, which was previously unrecognized.

The team used high-performance computer cluster to analyze billions of DNA sequences to identify the gene mutation in a child and her parents. The scientists then reached out to other collaborators to see if any of their patients also had the FBXL4 mutation. Eight additional affected children in six unrelated families were found to also have disease-causing mutations in this gene.

Biochemical assays performed on clinical basis in muscle and/or fibroblasts obtained from several subjects confirmed the deleterious effect of FBXL4 mutations on mitochondrial bioenergetics. Muscle homogenates or isolated mitochondria from subjects with FBXL4 mutations showed variably decreased activity of mitochondrial respiratory chain complexes.

The authors concluded that they provided evidence that recessive FBXL4 mutations are responsible for severe, infantile-onset mitochondrial encephalomyopathy. A child can inherit a mitochondrial disease either from the mother alone or from both parents carrying mutations in the same nuclear gene. Mitochondrial diseases affect between 1 in 4,000 and 1 in 5,000 people. The study was published on August 29, 2013, in the American Journal of Human Genetics.

Related Links:
Loyola University Stritch School of Medicine


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Droplet Digital PCR System
QX600 AutoDG
New
Hemoglobin Stool Test
CerTest FOB 50 + 200 One Step Combo Card Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: Mimix Reference Standards are cell-line derived to maintain genomic complexity and mimic patient material across molecular diagnostics workflows (Photo courtesy of Revvity)

New Cancer Testing Standards to Improve Diagnostic Accuracy for Oncology Labs

Accurate diagnosis, including the identification of genomic markers, is essential for determining the most effective cancer treatments for patients. To ensure this, laboratories require reliable reference... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.