We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Noninvasive Technology Accurately Detects Malaria Through the Skin

By LabMedica International staff writers
Posted on 07 Jan 2014
Vapor nanobubbles rapidly detect malaria through the skin. More...
The noninvasive technology accurately detects low levels of malaria infection in seconds with a laser scanner.

The new diagnostic technology uses a low-powered laser that creates tiny vapor nanobubbles inside malaria-infected cells. The bursting bubbles have a unique acoustic signature that allows for a very sensitive diagnosis.

The vapor nanobubble technology requires no dyes or diagnostic chemicals, and there is no need to draw blood. The new technology uses a low-powered laser that creates tiny vapor nanobubbles inside malaria-infected cells. The bursting bubbles have a unique acoustic signature that allows for an extremely sensitive diagnosis.

“Ours is the first through-the-skin method that’s been shown to rapidly and accurately detect malaria in seconds without the use of blood sampling or reagents,” said lead investigator Dmitri Lapotko, a Rice University (Houston, TX, USA) scientist who invented the vapor nanobubble technology. The diagnosis and screening will be supported by a low-cost, battery-powered portable device that can be operated by nonmedical personnel. One device should be able to screen up to 200,000 people per year, with the cost of diagnosis estimated to be below 50 cents, he said.

The preclinical study published in the January 2014 Proceedings of the National Academy of Sciences of the United States of America (PNAS) shows that Rice’s technology detected even a single malaria-infected cell among a million normal cells with zero false-positive readings.

Inexpensive rapid diagnostic tests exist, but they lack sensitivity and reliability. The gold standard for diagnosing malaria is a “blood smear” test, which requires a sample of the patient’s blood, a trained laboratory technician, chemical reagents, and high-quality microscope. These are often unavailable in low-resource hospitals and clinics in the developing world.

“The vapor nanobubble technology for malaria detection is distinct from all previous diagnostic approaches,” said study coauthor Dr. David Sullivan, a malaria clinician and researcher at Malaria Research Institute at Johns Hopkins University. “The vapor nanobubble transdermal detection method adds a new dimension to malaria diagnostics, and it has the potential to support rapid, high-throughput and highly sensitive diagnosis and screening by nonmedical personnel under field conditions.”

The transdermal diagnostic method takes advantage of the optical properties and nanosize of hemozoin, a nanoparticle produced by a malaria parasite inside red blood cell. Hemozoin crystals are not found in normal red blood cells.

Lapotko, a faculty fellow in biochemistry and cell biology and in physics and astronomy at Rice University, and lead coauthor Ekaterina Lukianova-Hleb found that hemozoin absorbs the energy from a short laser pulse and creates a transient vapor nanobubble. This short-lived vapor nanobubble emerges around the hemozoin nanoparticle and it is detected both acoustically and optically. In the study, the researchers found that acoustic detection of nanobubbles made it possible to detect malaria with extraordinary sensitivity.

The first trials of the technology in humans are expected to begin in Houston in early 2014.

Related Links:

Rice University



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
Gold Member
Hematology Analyzer
Medonic M32B
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.