We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us


SCIEX develops and sells scientific instrumentation, software, and services for the life science, clinical research, ... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Proteins Linked to COVID-19-Associated Inflammatory Syndromes

By LabMedica International staff writers
Posted on 10 May 2022
Print article
Image: TripleTOF 6600+ System optimized for large-scale quantitative mass spectrometry and offers sensitive and robust quantitation using dedicated low flow source technology (Photo courtesy of Sciex)
Image: TripleTOF 6600+ System optimized for large-scale quantitative mass spectrometry and offers sensitive and robust quantitation using dedicated low flow source technology (Photo courtesy of Sciex)

COVID-19 associated acute respiratory distress syndrome (COVID-19 ARDS) is one of the major manifestations of the severe cases, characterized by hypoxemic respiratory failure with bilateral lung infiltrate, as well as multi-organ dysfunction and extensive microthrombus formation.

A minority of children with COVID-19 present with an unexplained multisystem inflammatory syndrome termed ‘multisystem inflammatory syndrome in children’ or MIS-C, also known as the Pediatric Multisystem Inflammatory Syndrome Temporally associated with SARS-CoV-2. Signs of MIS-C manifested 2 to 4 weeks after the SARS-CoV-2 infection, showing similar clinical features to Kawasaki disease and toxic shock syndrome.

A large team of Clinical Scientists at the Murdoch Children’s Research Institute (Melbourne, Australia) and their colleagues characterized the underlying mechanisms associated with severe COVID-19 phenotypes in children (MIS-C and COVID-19 ARDS) and how their plasma proteomic pathways differ from healthy children. Blood samples from SARS-CoV-2 infected children with MIS-C or COVID-19 ARDS were collected from children at the Necker–Enfants Malades Hospital (Paris, France) in 2020. Blood samples from healthy children were collected, processed and stored at −80 °C prior to the COVID-19 pandemic.

Mass Spectrometry proteomics to determine the plasma proteins expressed in healthy children pre-pandemic, children with multisystem inflammatory syndrome (MIS-C) and children with COVID-19 induced ARDS. Information Dependent Acquisition and SWATH Acquisition using a 6600 TripleTOF mass spectrometer (Sciex, Framingham, MA, USA) coupled to an Eksigent Ultra-nanoLC-1D system (Eksigent Technologies, Dublin, CA, USA) was employed for both IDA and SWATH-MS analysis.

The scientists uncovered 76 proteins that were differentially expressed across the groups as well as 85 proteins that were specific to MIS-C and 52 specific to ARDS. These protein sets highlighted the roles of the complement activation and coagulation pathways in both inflammatory syndromes as well as suggested the involvement of Fcγ receptor and B-cell receptor activation in MIS-C as well as heme scavenging and retinoid metabolism in COVID-19-related ARDS.

The authors conclude that they had observed complement activation and coagulation dysregulation in children with MIS-C and COVID-ARDS with additional contribution of FcGR and BCR activation in MIS-C and they suggest the scavenging of haem and retinoid metabolism in COVID-19 ARDS. The study was published on May 2, 2022 in the journal Nature Communications.

Related Links:
Murdoch Children’s Research Institute 
Necker–Enfants Malades Hospital 
Eksigent Technologies 

Gold Supplier
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
IFA Automation Solution
dIFine 30 System
3 Part Diff Auto Hematology Analyzer

Print article


Molecular Diagnostics

view channel
Image: The Geo portable testing platform integrated with the Snap collection device (Photo courtesy of ReadyGo Diagnostics)

Ultra-Portable Rapid Test Platform Offers Complete Sample-to-Answer Solution for Remote and Off-Grid Testing

An ultra-portable isothermal molecular diagnostics system integrated with a patented device which combines sample collection and processing into a single, easy-to-use disposable is set to revolutionize... Read more


view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more


view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more


view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more


view channel
Image: The UNIQO 160 (CE-IVDR) advances diagnostic analysis for autoimmune diseases (Photo courtesy of EUROIMMUN)

Novel Automated IIFT System Enables Cutting-Edge Diagnostic Analysis

A newly-launched automated indirect immunofluorescence test (IIFT) system for autoimmune disease diagnostics offers an all-in-one solution to enhance the efficiency of the complete IIFT process, comprising... Read more


view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more


view channel
Image: The global HbA1c testing devices market is expected to reach USD 2.56 billion in 2027 (Photo courtesy of Freepik)

Global Hemoglobin A1c Testing Devices Market Driven by Rising Prevalence of Diabetes

Hemoglobin A1c (HbA1c), or glycated hemoglobin, refers to hemoglobin with glucose attached. HbA1c testing devices are used for blood tests that determine average blood glucose, or blood sugar levels.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.