We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-Powered Blood Test Accurately Detects Ovarian Cancer

By LabMedica International staff writers
Posted on 09 May 2025

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. More...

Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in the early stages (Stage I or II) because the symptoms, such as bloating, abdominal pain, and digestive issues, often resemble those of benign conditions. Current diagnostic methods, which typically rely on invasive procedures or less reliable biomarkers, frequently fail to detect the disease at an early stage. This challenge is further exacerbated by the shortage of gynecologic oncologists, which limits timely access to specialized care. Consequently, a reliable early detection test for symptomatic women is urgently needed. Now, a groundbreaking artificial intelligence (AI)-powered multi-omic platform has demonstrated high accuracy in detecting ovarian cancer in symptomatic women, a group where early diagnosis is critical but often delayed.

The GlycoLocate platform developed by AOA Dx (Denver, CO, USA) integrates multi-omic data by combining lipid, ganglioside, and protein biomarkers from a small blood sample using liquid chromatography mass spectrometry (LC-MS) and immunoassays. Machine learning algorithms analyze these complex multi-omic datasets to identify disease-specific signatures, providing results that surpass those from models relying on single biomarker types. This approach positions the test as a promising tool for clinical diagnostics. In a pioneering study, AOA Dx’s platform demonstrated high diagnostic accuracy for ovarian cancer detection, outperforming traditional markers such as CA125. In collaboration with world-renowned institutions, researchers at AOA Dx analyzed around 1,000 patient samples representing a real-world clinical population, showing strong performance in this crucial group.

The study was conducted in two independent cohorts, both of which represented clinically similar populations. Cohort 1 was used for model training, while Cohort 2 served as an independent testing set, consisting of prospectively collected symptomatic samples from AOA’s intended use population. In Cohort 1, the model achieved an area under the curve (AUC) of 93% when distinguishing all stages of ovarian cancer from controls and 92% for early-stage (stage I/II) disease. In Cohort 2, the model maintained excellent performance with an AUC of 92% for ovarian cancer overall and 89% for early-stage disease. These results underscore the reliability of AOA Dx’s machine learning algorithms in identifying cancer-specific biomarker patterns. Additionally, previous research at AOA Dx has shown the potential clinical value of lipidomics for early ovarian cancer detection.

“Our platform detects ovarian cancer at early stages and with greater accuracy than current tools,” said Oriana Papin-Zoghbi CEO and Co-Founder of AOA Dx. “These findings show its potential to aid clinicians in making faster, more informed decisions for women who need clarity during a challenging diagnostic process.”

Related Links:
AOA Dx


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.