We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Single-Cell Diagnostics Advocated for Breast Cancer Subtyping

By LabMedica International staff writers
Posted on 06 Nov 2017
In an opinion article based their analysis of studies, two medical researchers argue that women diagnosed with breast cancer (BC) would likely benefit from treatment based also on identifying the molecular subtype of different cells within their tumors, in addition to current molecular and histopathology testing of collections of tumor cells.

They discuss the growing consensus that a tumor can have cells of multiple origins and respond variably to treatment. More...
The authors advocate for development of more accurate diagnostics to capture molecular irregularities between cells within a tumor.

"Breast tumors are moving targets because they are really versatile," said Jun-Lin Guan, professor at University of Cincinnati College of Medicine (Cincinnati, OH; USA), who co-authored the paper with postdoctoral fellow Syn Kok Yeo, "If you use a treatment that's targeting one subtype, which kills one type of breast cancer, often the other kind will actually expand. That defeats the purpose of treatment."

BC cells differ by the types of molecular markers (genetic or biochemical, some of which are found on their surface) that physicians can have tested to understand the characteristics of a patient's cancer to help devise an optimal treatment strategy. For example, women with the HER2+ BC subtype generally have a poorer prognosis than those with the luminal A tumors because of how quickly the cells multiply. Often tumor samples are taken and screened for the most common markers present, but Prof. Guan and Dr. Yeo's analysis of human and rodent studies raises the possibility that overlapping subtypes are being missed.

The researchers put forward the hypothesis that the co-existence of distinct BC subtypes within tumors happens because a fraction of BC cells retain many stem cell -like qualities and thus reserve the capability to easily change. This has been observed in human cancer cells and in rodent studies but has yet to be confirmed in patients. Single-cell analysis could assess whether this problem is common or rare in humans.

They advocate for diagnostic testing to be combined with single-cell technologies, in which individual cells are screened (via mass spectrometry, DNA sequencing, etc) for molecular markers. However, single-cell approaches are currently expensive and require specialized expertise, so they are not yet realistic for regular patient screenings.

"What we're talking about is still not widely used in practice--there's a gap between basic cancer research and the clinics that do the diagnoses," Prof. Guan said, "However, single-cell technologies are advancing very quickly, so it's possible that we can see them being used in the near future."

The paper, by Yeo SK and Guan J-L, was published October 24, 2017, in the journal Trends in Cancer.

Related Links:
University of Cincinnati College of Medicine


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.