We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Spectroscopy Reveals Fingerprints for Diabetes Progression

By LabMedica International staff writers
Posted on 28 Aug 2017
Researchers report a method to study biochemical changes that occur in the pancreas during the development of diabetes. More...
Based on vibrational microspectroscopic technology, the method can be used to extract biochemical profiles containing information about disease progression. This could facilitate improved understanding of key mechanistic processes in diabetes development and manifestation, and could be used to develop better prognostic, diagnostic, and monitoring tools.

Despite the global prevalence of diabetes, researchers have had limited methods to study biochemical changes directly in the pancreas, a key organ for the development of diabetes. “This method is well-suited for studying biological samples since it does not damage the sample, does not require external markers such as antibody labels, and can be used in microscopy settings. The method can for example be used to determine which cell types are affected in a certain tissue, where, and how,” said study co-supervisor Dr. András Gorzsás, researcher at Umeå University (Umea, Sweden). The study was a collaborative effort with researcher teams at NTNU in Trondheim, Norway, and Karolinska Institute.

It is usually very difficult to interpret the extremely complex results and vast amount of data produces by vibrational microspectroscopy assessment. By using advanced statistical methods, noise (such as natural variations) can be filtered out, resulting in a better overview and allows researchers to focus on important factors. In the article the researchers describe how their method for multivariate statistical analysis enables them to handle multiple variables simultaneously and thus analyze the data from vibrational microspectroscopy of the pancreas.

Using this method, which until now has been used primarily to study plant tissues, the researchers showed that it is possible to discover previously unknown biochemical changes in the pancreas during disease development. In addition, previously known changes in the tissue may be detectable at even earlier stages of disease progression compared to what has been described by using other techniques.

“By using this method we can create biochemical fingerprints of all changes occurring in the pancreas. The fingerprints inform us of what cell type we are looking at, which animal model it comes from, and how far the disease has progressed. These fingerprints are so precise that even unknown samples can be classified if there is available reference material,” said study co-supervisor Ulf Ahlgren, professor at Umeå University.

Moreover, the researchers demonstrated in a transplantation experiment that Islets of Langerhans pancreatic tissue may be studied in vivo – in the living organism, suggesting the method could be used to analyze the pancreas from outside of the organ, without the need to obtain tissue samples.

“I believe this possibility to study pancreatic tissue and especially the biochemistry of the insulin-producing Islets of Langerhans in the living organism is a very interesting opportunity for diabetes research. The method could prove useful for example to study the direct effects of anti-diabetic therapies on the biochemical composition and function of insulin-producing cells” said Prof. Ahlgren.

The researchers are also hopeful that their findings can lay a foundation for developing better tools for identifying cancer tissue to be surgically removed as part of pancreatic cancer treatment.

The study, by Nord C et al, was published July 27, 2017, in the journal Scientific Reports.

Related Links:
Umeå University


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
Gold Member
Collection and Transport System
PurSafe Plus®
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.