We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Ultra-Early Inflammatory Biomarker Identified for TBI

By LabMedica International staff writers
Posted on 18 Jul 2017
Traumatic brain injury (TBI) is set to become the leading cause of neurological disability across all age groups. More...
Currently, no reliable biomarkers exist to help diagnose the severity of TBI to identify patients who are at risk of developing secondary injuries.

Improvements in emergency response times have increased TBI survivability, the necessity for discovering reliable markers by which to identify patients at risk of the development of secondary injuries and thus requiring more active monitoring and intervention remains a significant challenge.

Scientists at the University of Birmingham (Edgbaston, UK) took blood samples from 30 injured patients within the first hour of injury prior to the patient arriving at hospital. Subsequent blood samples were taken at intervals of four hours, 12 hours and 72 hours after injury. These blood samples were then screened for inflammatory biomarkers, which correlated with the severity of the injury using protein detection methods. In the laboratory, the team used a panel of 92 inflammation-associated human proteins when analyzing the blood samples, which were screened simultaneously.

The Proseek Multiplex Inflammation I was used to perform the multiplex proximity assay. Briefly, human serum together with a mix containing antibodies labelled with corresponding DNA oligonucleotides was incubated over night at 8 °C. Following this an extension mix containing proximity extension assay enzymes and polymerase chain reaction (PCR) reagents were added. Incubation plates were then placed on the thermal cycler for 17 cycles of DNA amplification. The 96.96 Dynamic Array IFC was primed and the protein expression program activated in the Fluidigm Biomark reader.

The team identified Cystatin D (CST5), AXIN1 and TNF-related apoptosis-inducing ligand (TRAIL) as novel early biomarkers of TBI. CST5 identified patients with severe TBI from all other cohorts and importantly was able to do so within the first hour of injury. AXIN1 and TRAIL were able to discriminate between TBI and healthy volunteers in less than one hour. They concluded that CST5, AXIN1 and TRAIL are worthy of further study in the context of a pre-hospital or pitch-side test to detect brain injury.

Lisa J. Hill, PhD, the leading author of the study said, “"Early and correct diagnosis of traumatic brain injury is one of the most challenging aspects facing clinicians. Being able to detect compounds in the blood, which help to determine how severe a brain injury is, would be of great benefit to patients and aid in their treatment. Currently, no reliable biomarkers exist to help diagnose the severity of TBI to identify patients who are at risk of developing secondary injuries that impair function, damage other brain structures and promote further cell death. Thus, the discovery of reliable biomarkers for the management of TBI would improve clinical interventions.” The study was published on July 10, 2017, in the journal Scientific Reports.

Related Links:
University of Birmingham


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Nutating Mixer
Enduro MiniMix
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.