We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Analysis of Isotope Imbalance May Aid Liver Cancer Diagnosis

By LabMedica International staff writers
Posted on 01 Mar 2015
A novel approach for diagnosing liver cancer (hepatocellular carcinoma) is based on analytical methods frequently used in the earth sciences.

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. More...
Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis (alcoholism being the most common cause). Compared to other cancers, HCC is a rare tumor in the United States. In countries where hepatitis is not endemic, most malignant cancers in the liver are not primary HCC but metastasis of cancer from elsewhere in the body.

Investigators at the École Normale Supérieure de Lyon (France) analyzed the ratios of stable copper (Cu) and sulfur (S) isotopes in liver cancer patients. This study was a hi-tech look into observations dating from as far back as 1928 indicating that the hypoxic tumor environment altered the normal metabolism of elements such as copper and sulfur as well as the redox state of the metals, impacting their ability to bind to ligands.

Specifically, the investigators used the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with (HCC) as a tool to explore cancer-driven copper and sulfur imbalances.

They reported that copper was 63Cu-enriched by about 0.4% and sulfur was 32S-enriched by about 1.5% in the blood of patients compared with that of control subjects. HCC patients had more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden was not in favor of a dietary origin but rather suggested a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect was similar in red blood cells and serum of HCC patients, implying that sulfur fractionation was systemic. The 32S-enrichment of sulfur in the blood of HCC patients was compatible with the notion that sulfur partly originated from tumor-derived sulfides.

First author Dr. Vincent Balter, professor of geology at the École Normale Supérieure de Lyon, said, "This indicates that the blood 65Cu levels would decrease as a function of the severity of the cancer, which would be of interest for the estimation of tumor burden. The enrichment of blood with the 32S isotope may provide new biomarkers for cancer detection and monitoring."

The study was published in the January 27, 2015, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

École Normale Supérieure de Lyon



New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
Gold Member
Hematology System
Medonic M16C
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.