We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Beryllium Causes Deadly Lung Disease

By LabMedica International staff writers
Posted on 16 Jul 2014
How the metal beryllium triggers a deadly immune response in the lungs has been discovered using detailed maps of molecular shapes and the electrical charges surrounding them. More...


A genetic susceptibility to the disease creates a molecular pocket in an immune system protein, which captures beryllium ions and triggers an inflammatory response in the lungs and this immune response lies somewhere between classic forms of allergic hypersensitivity and autoimmunity.

Scientists at the Howard Hughes Medical Institute (Denver, CO, USA) performed a series of highly detailed genetic, X-ray diffraction, molecular binding and electrostatic studies to show how this single amino acid can combine with other amino acids from the human leukocyte antigen (HLA)-DP2 subunit and some of its bound self-peptides to create a unique molecular pocket that captures a single beryllium ion along with a sodium ion.

The peptides that bind to HLA-DP2 come from the body's own tissues and normally elicit no immune response. With the beryllium and sodium firmly lodged in the molecular pocket, however, those peptides have a very slightly altered shape and electrical charge, which roving T cells recognize as foreign and dangerous. They initiate an immune response that causes inflammation and scarring in the lungs. The thermal stabilities of various major histocompatibility complex (MCH) alleles, the MHCII-peptide complexes, were determined by differential scanning fluorimetry using either a Stratagene MX3005p (Agilent; Santa Clara, CA, USA) or CFX96 real time polymerase chain reaction instrument (RCT-PCR, Bio-Rad; Hercules, CA, USA).

About 85% of people who develop chronic beryllium disease have the immune system protein HLA-DP2. Cells throughout the body use this molecule to tell the immune system what is going on inside of them. HLA-DP2 sits on the cell surface holding small protein fragments taken from the cell's interior. Immune system sentinels known as T cells collide against HLA-DP2 and its displayed protein fragment. If the protein fragment is derived from the body's own proteins, the T cell ignores it; if it is a foreign peptide, say from a bacterium, virus or other pathogen, the T cell sounds the alarm and triggers an immune response.

John W. Kappler, PhD, a professor of immunology and the senior author of the study said, “This response resembles allergic hypersensitivity in that a metal ion causes an allergic reaction. But it also resembles autoimmunity in that the immune system is mounting an attack against a self-peptide. It is a new form of immune response, and may lead to new therapeutic strategies to treat and prevent the disease.” The study was published on July 3, 2014, in the journal Cell.

Related Links:

Howard Hughes Medical Institute 
Agilent
Bio-Rad



Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.