We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Technique Predicts Preterm Births in High Risk Women

By LabMedica International staff writers
Posted on 14 Aug 2020
Print article
Typical GC-IMS output of a vaginal swab. Red spots indicate individual chemicals and machine learning identifies which of these chemicals hold discriminatory information (Photo courtesy of the University of Warwick).
Typical GC-IMS output of a vaginal swab. Red spots indicate individual chemicals and machine learning identifies which of these chemicals hold discriminatory information (Photo courtesy of the University of Warwick).
Globally, preterm birth is the leading cause of death in children under 5 years with 15 million babies being born before 37 weeks’ gestation each year. Spontaneous preterm birth is a syndrome, which can be precipitated by a variety of factors.

The association between bacterial vaginosis (BV) detected using laboratory techniques and preterm labor has been recognized for many years. Its presence, detected in early pregnancy is associated with an increased risk of preterm labor. However, treatment of BV with antibiotics has not been demonstrated to prevent preterm birth.

Gynecologists and Bioengineers at the Warwick University (Coventry, UK) carried out a prospective observational cohort of repeated sampling of 216 patients between 10 to 29 weeks of pregnancy (total 493 sets of swabs were taken, with at least two swabs per patient), from women attending the high-risk preterm prevention clinic at a tertiary level teaching hospital from January 2017-August 2018. The team initially analyzed volatile organic compounds (VOCs) present in the vagina for a condition called bacterial vaginosis, in which the bacteria of the vagina have become imbalanced. Vaginal swabs were taken during the second and third trimesters of pregnancy and the outcome of all pregnancies followed up.

The technology they used works by separating the vapor molecules by combining two techniques that first pre-separates molecules based on their reaction with a stationary phase coating (a gas-chromatograph), followed by measuring their mobility in a high-electric field (an Ion Mobility Spectrometer). The odors/VOCs emanating from the samples were analyzed using a GC-IMS instrument (G.A.S., Dortmund, Germany), which is based on Gas Chromatograph – Ion Mobility Spectrometry principles (GC-IMS). Using machine learning techniques, the team 'trained' the technology to spot patterns of VOCs that were signs of bacterial vaginosis.

The team reported that VOC analysis of vaginal swabs, taken in the mid-trimester, is a fair test (AUC 0.79) for preterm prediction, with a sensitivity of 0.66 (95%CI 0.56–0.75) and specificity 0.89 (95%CI 0.82–0.94). Using vaginal swabs taken closest to delivery, VOC analysis is a good test (AUC 0.84) for the prediction of preterm birth with a sensitivity of 0.73 (95%CI 0.64–0.81) and specificity of 0.90 (95%CI 0.82–0.95).

Lauren Lacey, MD, an associate professor and lead author of the study, said, “We've demonstrated that the technology has good diagnostic accuracy, and in the future it could form part of a care pathway to determine who would deliver preterm. VOC technology is really interesting because it reflects both the microbiome and the host response, whereas other technologies look for a specific biomarker. It's the beginning of looking at the association of VOCs with preterm delivery. We want to develop this and look at whether these patterns could be implemented into a care pathway.”

The authors concluded that this novel work has demonstrated that VOC analysis has the potential to be used as a predictive tool to support the prediction of preterm birth and aid personalized prevention strategies. The study was published on July 22, 2020 in the journal Scientific Reports.

Related Links:

Warwick University
G.A.S Dortmund
Gold Supplier
Hemostasis Analyzer
STA R Max 3
New
3-Part Hematology Analyzer
HL 3125 plus
New
Tuberculosis (TB) Test
QIAreach QuantiFERON-TB
New
Gold Supplier
SARS-CoV-2 Pooling Test
Extensive SARS-CoV-2 Pooling

Print article

Channels

Molecular Diagnostics

view channel
Image: Model of the PD-1 (Programmed cell death protein 1) protein. Only a subset of recurrent glioblastomas respond to anti-PD-1 immunotherapy (Photo courtesy of Wikimedia Commons)

Biomarker Predicts Potential Benefit of Checkpoint Inhibitor Therapy for Brain Cancer Patients

A phosphorylated form of ERK (extracellular signal-regulated kinase) protein has been identified as a biomarker that may be used to predict which brain cancer patients might benefit from checkpoint inhibitor... Read more

Hematology

view channel
Image: The UniCel DxH 800 Coulter Cellular Analysis System (Photo courtesy of Beckman Coulter)

Monocyte Distribution Width Predicts Sepsis in Critically Ill Patients

Sepsis has been reported as a major cause of increased morbidity, length of stay and mortality among patients hospitalized in Intensive Care Units (ICUs) for any cause. The survival of patients developing... Read more

Immunology

view channel
Image: Procartaplex Immunoassays Kits are based on the principles of a sandwich ELISA, using two highly specific antibodies binding to different epitopes of one protein to quantitate all protein targets simultaneously (Photo courtesy of Thermo Fisher Scientific)

Assay Developed for Patient-Specific Monitoring and Treatment for Ovarian Cancer

Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing.... Read more

Microbiology

view channel
Image: Clinical metagenomics (CMg) using nanopore sequencing (Photo courtesy of Oxford Nanopore Technologies)

Same Day Test Identifies Secondary Infections in COVID-19 Patients

The intensive care unit (ICU) is a dynamic environment with frequent staff-patient contact for invasive monitoring, interventions and personal care that together introduce the risk of secondary or nosocomial... Read more

Pathology

view channel
Image: The Ventana BenchMark Ultra autostainer is for cancer diagnostics with automation and the test menu include IHC, ISH, and FITC tests (Photo courtesy of Ventana Medical System)

Specific Biomarker Investigated for Triple-Negative Breast Cancer Diagnosis

Triple-negative breast cancer (TNBC) is defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression and comprises a heterogeneous... Read more

Technology

view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more

Industry

view channel
Illustration

Global HBA1c Laboratory Tests Market Driven by Rise in Diabetic Population

The global HBA1c laboratory tests market is projected to expand at a significant pace over the coming years, driven by an increase in the prevalence of diabetes, rise in prescription rate of HBA1c tests... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.