We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Gene Panel Detects Early Signs of Kidney Transplant Rejection

By LabMedica International staff writers
Posted on 12 Aug 2019
Print article
Image: The presence of lymphocytes within the tubular epithelium, attesting to acute cellular rejection of a renal graft (Photo courtesy of Wikimedia Commons).
Image: The presence of lymphocytes within the tubular epithelium, attesting to acute cellular rejection of a renal graft (Photo courtesy of Wikimedia Commons).
A team of European kidney transplantation researchers has developed and validated an mRNA-based gene set found in peripheral blood that can identify patients with symptoms of antibody-based kidney transplant rejection.

Antibody-mediated rejection, a leading cause of kidney transplantation failure, is currently diagnosed by histological assessment of invasive allograft biopsies. Accurate non-invasive biomarkers are not available, and from 10 to 20% of rejections remain undetected, which leads to graft failure, reinitiation of dialysis, and the need for a repeat transplant.

To identify potential rejection biomarkers, investigators at KU Leuven (Belgium) and their collaborators performed a genome-wide study (GWAS) to identify differences in RNA molecules among 117 patients with and without kidney rejection symptoms following transplant. In the second phase of the study, the different molecules of an independent group of 183 patients were processed into a mathematical model. The final biomarker consists of eight RNA molecules that were measured with an RT-PCR technique. In the third phase, the biomarker was validated in 387 patients in four European academic hospitals.

Blood samples for the investigation were prospectively collected from participants in the BIOMARGIN study at time of renal allograft biopsies between June 2011 and August 2016. BIOMARGIN (Limoges, France) was a four-year European collaborative research project that began in March 2013. The consortium brought together 13 complementary partners, including three small and medium enterprises, one technology transfer / management company, five academic laboratories, and four university hospitals from four European Member States (France, Belgium, Germany, and Sweden).

Results obtained during the initial phase of the study served to identify an eight-gene assay (CXCL10, FCGR1A, FCGR1B, GBP1, GBP4, IL15, KLRC1, TIMP1) in blood samples from 49 cases with and 134 cases without antibody-mediated rejection. In the validation cohort, this eight-gene assay discriminated between 41 cases with and 346 cases without antibody-mediated rejection with good diagnostic accuracy. The diagnostic accuracy of the eight-gene assay was retained both at time of stable graft function and of graft dysfunction, within the first year and also later after transplantation.

"Rejection by HLA antibodies often has serious consequences," said senior author Dr. Maarten Naesens, professor of nephrology at KU Leuven. "Traditional tests for assessing the function of transplanted kidneys can often only identify rejection when it is already chronic and irreversible. Thanks to our biomarker, we can detect rejection much earlier and with a simple blood test. Because the test is less invasive, we will be able to test more often than with the current biopsies."

"In principle, our antibody rejection test has been sufficiently validated for commercialization," said Dr. Naesens. "This is the next and necessary step to be able to offer the test to patients. With the test, patients who have no rejection of antibodies will no longer have to undergo a biopsy. The biomarker will also help to detect rejection sooner and will support the search for better medicines against rejection by antibodies."

The eight-gene panel was described in the August 1, 2019, online edition of the journal EbioMedicine.

Related Links:
KU Leuven
BIOMARGIN

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
All-in-one Molecular Diagnosis System
Panall 8000

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.