We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Machine Learning Approach Detects Cancer by Analyzing DNA in Blood Samples

By LabMedica International staff writers
Posted on 10 Jun 2019
Researchers have described a proof-of-principle approach for the screening, early detection, and monitoring of human cancer based on a machine learning approach that evaluates fragmentation patterns of cell-free DNA across the genome.

While cell-free DNA in the blood provides a non-invasive diagnostic avenue for patients with cancer, characteristics of the origins and molecular features of cell-free DNA are poorly understood. More...
To correct this lack, investigators at Johns Hopkins University (Baltimore, MD, USA) developed a machine learning-based approach to identify abnormal patterns of DNA fragments in the blood of patients with cancer.

They used this DELFI (DNA evaluation of fragments for early interception) method to analyze the fragmentation profiles of 236 patients with breast, colorectal, lung, ovarian, pancreatic, gastric, or bile duct cancer and 245 healthy individuals.

The machine-learning model incorporated genome-wide fragmentation features with sensitivities of detection ranging from 57% to more than 99% among the seven cancer types at 98% specificity. Fragmentation profiles could be used to identify the tissue of origin of the cancers to a limited number of sites in 75% of cases. Combining this approach with mutation-based cell-free DNA analyses detected 91% of patients with cancer.

"For various reasons, a cancer genome is disorganized in the way it is packaged, which means that when cancer cells die they release their DNA in a chaotic manner into the bloodstream," said first author Dr. Jillian Phallen, a postdoctoral research fellow at Johns Hopkins University. "By examining this cell-free DNA (cfDNA), DELFI helps identify the presence of cancer by detecting abnormalities in the size and amount of DNA in different regions of the genome based on how it is packaged."

"We are encouraged about the potential of DELFI because it looks at a completely independent set of cell-free DNA characteristics from those that have posed difficulties over the years, and we look forward to working with our collaborators worldwide to make this test available to patients," said senior author Dr. Victor E. Velculescu, professor of oncology at Johns Hopkins University.

The DELFI method was described in the May 29, 2019, online edition of the journal Nature.

Related Links:
Johns Hopkins University


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
PBC Assay
Primary Biliary Cholangitis Assays
New
UHF RFID Tag & Inlay
AD-327 U9 ETSI Pure 95
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.