We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Fluidic Nanodevices Created by Liquid 3D Printing

By LabMedica International staff writers
Posted on 08 May 2019
Print article
Image: The assembly of a three-dimensional printable fluidic device: When two liquids - one containing nanoscale clay particles and the other containing polymer particles - are printed onto the substrate, they come together at the interface of the two liquids and within milliseconds form a very thin channel or tube about one millimeter in diameter (Photo courtesy of the Lawrence Berkeley National Laboratory).
Image: The assembly of a three-dimensional printable fluidic device: When two liquids - one containing nanoscale clay particles and the other containing polymer particles - are printed onto the substrate, they come together at the interface of the two liquids and within milliseconds form a very thin channel or tube about one millimeter in diameter (Photo courtesy of the Lawrence Berkeley National Laboratory).
Researchers have used a novel three-dimensional (3D) printing technique to create an all-liquid fluidic device that is capable performing a wide range of applications - from making battery materials to screening drug candidates.

Systems comprised of immiscible liquids held in non-equilibrium shapes by the interfacial assembly and jamming of nanoparticle-polymer surfactants have significant potential to advance catalysis, chemical separations, energy storage, and conversion. However, directing spatial functionality within them and coupling processes in both phases has remained a challenge.

Investigators at Lawrence Berkeley National Laboratory (CA, USA) exploited nanoclay-polymer surfactant assemblies at an oil-water interface to produce a semi-permeable membrane between the liquids. Flow channels were fabricated using micropatterned two-dimensional (2D) substrates and liquid-in-liquid three-dimensional printing. The anionic walls of the device were functionalized with cationic small molecules, enzymes, and colloidal nanocrystal catalysts. Three-dimensional printing was used to build bridges between channels, connecting them so that a chemical flowing through them encountered catalysts in a specific order, setting off a cascade of chemical reactions to make specific chemical compounds.

The investigators reported in the March 6, 2019, online edition of the journal Nature Communications that multi-step chemical transformations could be conducted within the channels under flow, as could selective mass transport across the liquid-liquid interface for in-line separations. Ultimately, these all-liquid systems were automated using pumps, detectors, and control systems, revealing a latent ability for chemical logic and learning.

"What we demonstrated is remarkable. Our three-dimensional printed device can be programmed to carry out multistep, complex chemical reactions on demand," said senior author Dr. Brett Helms, staff scientist at Lawrence Berkeley National Laboratory. "What is even more amazing is that this versatile platform can be reconfigured to efficiently and precisely combine molecules to form very specific products, such as organic battery materials. The form and functions of these devices are only limited by the imagination of the researcher. Autonomous synthesis is an emerging area of interest in the chemistry and materials communities, and our technique for three-dimensional printing devices for all-liquid flow chemistry could help to play an important role in establishing the field."

Related Links:
Lawrence Berkeley National Laboratory

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
All-in-one Molecular Diagnosis System
Panall 8000

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Protein ‘signatures’ obtained via a blood sample can be used to predict the onset of 67 diseases (Photo courtesy of Queen Mary University of London)

Protein Signatures in Blood Can Predict Risk of Developing More Than 60 Diseases

Measuring specific proteins to diagnose conditions like heart attacks, where troponin is tested, is a well-established clinical practice. Now, new research highlights the broader potential of protein measurements... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Microbiology

view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more

Pathology

view channel
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.