We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Fluidic Nanodevices Created by Liquid 3D Printing

By LabMedica International staff writers
Posted on 08 May 2019
Print article
Image: The assembly of a three-dimensional printable fluidic device: When two liquids - one containing nanoscale clay particles and the other containing polymer particles - are printed onto the substrate, they come together at the interface of the two liquids and within milliseconds form a very thin channel or tube about one millimeter in diameter (Photo courtesy of the Lawrence Berkeley National Laboratory).
Image: The assembly of a three-dimensional printable fluidic device: When two liquids - one containing nanoscale clay particles and the other containing polymer particles - are printed onto the substrate, they come together at the interface of the two liquids and within milliseconds form a very thin channel or tube about one millimeter in diameter (Photo courtesy of the Lawrence Berkeley National Laboratory).
Researchers have used a novel three-dimensional (3D) printing technique to create an all-liquid fluidic device that is capable performing a wide range of applications - from making battery materials to screening drug candidates.

Systems comprised of immiscible liquids held in non-equilibrium shapes by the interfacial assembly and jamming of nanoparticle-polymer surfactants have significant potential to advance catalysis, chemical separations, energy storage, and conversion. However, directing spatial functionality within them and coupling processes in both phases has remained a challenge.

Investigators at Lawrence Berkeley National Laboratory (CA, USA) exploited nanoclay-polymer surfactant assemblies at an oil-water interface to produce a semi-permeable membrane between the liquids. Flow channels were fabricated using micropatterned two-dimensional (2D) substrates and liquid-in-liquid three-dimensional printing. The anionic walls of the device were functionalized with cationic small molecules, enzymes, and colloidal nanocrystal catalysts. Three-dimensional printing was used to build bridges between channels, connecting them so that a chemical flowing through them encountered catalysts in a specific order, setting off a cascade of chemical reactions to make specific chemical compounds.

The investigators reported in the March 6, 2019, online edition of the journal Nature Communications that multi-step chemical transformations could be conducted within the channels under flow, as could selective mass transport across the liquid-liquid interface for in-line separations. Ultimately, these all-liquid systems were automated using pumps, detectors, and control systems, revealing a latent ability for chemical logic and learning.

"What we demonstrated is remarkable. Our three-dimensional printed device can be programmed to carry out multistep, complex chemical reactions on demand," said senior author Dr. Brett Helms, staff scientist at Lawrence Berkeley National Laboratory. "What is even more amazing is that this versatile platform can be reconfigured to efficiently and precisely combine molecules to form very specific products, such as organic battery materials. The form and functions of these devices are only limited by the imagination of the researcher. Autonomous synthesis is an emerging area of interest in the chemistry and materials communities, and our technique for three-dimensional printing devices for all-liquid flow chemistry could help to play an important role in establishing the field."

Related Links:
Lawrence Berkeley National Laboratory

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.