We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Prototype CTC Collection Device Tested Successfully in Model

By LabMedica International staff writers
Posted on 08 Apr 2019
A novel, wearable device for continuous isolation of circulating tumor cells (CTCs) from a peripheral vein was tested successfully in a dog model of human cancer.

CTCs are now an established biomarker for prognosis in patients with various carcinomas. More...
However, current CTC isolation technologies rely on small blood volumes from a single venipuncture limiting the number of captured CTCs. This produces statistical variability and inaccurate reflection of tumor cell heterogeneity.

To improve this situation, investigators at the University of Michigan (Ann Arbor, USA) and collaborators at Colorado State University (Fort Collins, USA) designed an in vivo indwelling intravascular CTC isolation device to continuously collect CTCs directly from a peripheral vein. The system would return the remaining blood products after CTC enrichment, permitting interrogation of larger blood volumes than could be obtained by classic phlebotomy over a prolonged period of time.

The investigators produced a prototype wearable device that utilized novel protocols for mixing blood with the clot-inhibiting drug heparin and that employed sterilization methods for killing bacteria without harming the cell-targeting antibodies on the chip. The chip itself incorporated the nanomaterial graphene oxide to create a dense matrix of antibody-tipped molecular chains, which enabled it to trap more than 80% of the cancer cells from the whole blood that flowed across it.

The investigators reported in the April 1, 2019, online edition of the journal Nature Communications that they had validated the system in canine models. Results demonstrated the capability for screening 1–2% of the animal's entire blood supply over a period of two hours. This approach yielded a substantial increase in CTC capture, compared with serial blood draws.

"Nobody wants to have a biopsy. If we could get enough cancer cells from the blood, we could use them to learn about the tumor biology and direct care for the patients. That is the excitement of why we are doing this," said senior author Dr. Daniel F. Hayes, professor of internal medicine at the University of Michigan. "This is the epitome of precision medicine, which is so exciting in the field of oncology right now."

Related Links:
University of Michigan
Colorado State University


Gold Member
Hybrid Pipette
SWITCH
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
ESR Analyzer
TEST1 2.0
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.