Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Prototype CTC Collection Device Tested Successfully in Model

By LabMedica International staff writers
Posted on 08 Apr 2019
A novel, wearable device for continuous isolation of circulating tumor cells (CTCs) from a peripheral vein was tested successfully in a dog model of human cancer.

CTCs are now an established biomarker for prognosis in patients with various carcinomas. More...
However, current CTC isolation technologies rely on small blood volumes from a single venipuncture limiting the number of captured CTCs. This produces statistical variability and inaccurate reflection of tumor cell heterogeneity.

To improve this situation, investigators at the University of Michigan (Ann Arbor, USA) and collaborators at Colorado State University (Fort Collins, USA) designed an in vivo indwelling intravascular CTC isolation device to continuously collect CTCs directly from a peripheral vein. The system would return the remaining blood products after CTC enrichment, permitting interrogation of larger blood volumes than could be obtained by classic phlebotomy over a prolonged period of time.

The investigators produced a prototype wearable device that utilized novel protocols for mixing blood with the clot-inhibiting drug heparin and that employed sterilization methods for killing bacteria without harming the cell-targeting antibodies on the chip. The chip itself incorporated the nanomaterial graphene oxide to create a dense matrix of antibody-tipped molecular chains, which enabled it to trap more than 80% of the cancer cells from the whole blood that flowed across it.

The investigators reported in the April 1, 2019, online edition of the journal Nature Communications that they had validated the system in canine models. Results demonstrated the capability for screening 1–2% of the animal's entire blood supply over a period of two hours. This approach yielded a substantial increase in CTC capture, compared with serial blood draws.

"Nobody wants to have a biopsy. If we could get enough cancer cells from the blood, we could use them to learn about the tumor biology and direct care for the patients. That is the excitement of why we are doing this," said senior author Dr. Daniel F. Hayes, professor of internal medicine at the University of Michigan. "This is the epitome of precision medicine, which is so exciting in the field of oncology right now."

Related Links:
University of Michigan
Colorado State University


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: An innovative deep learning model can accurately predict MSI tumor and immune checkpoint inhibitor responsiveness (Photo courtesy of Jae-Ho Cheong/Yonsei University College of Medicine)

AI Model Accurately Predicts MSI Tumor and Immune Checkpoint Inhibitor Responsiveness

One in three people is expected to develop cancer in their lifetime, and a key factor in patient prognosis is the tumor’s microsatellite status—whether it is stable or shows microsatellite instability-high (MSI-H).... Read more

Pathology

view channel
Image: Virtual staining of label-free tissue in imaging mass spectrometry (Photo courtesy of Ozcan Lab/UCLA)

Deep Learning Advances Imaging Mass Spectrometry with Virtual Histological Detail

Imaging mass spectrometry (IMS) is a powerful technique that can map thousands of molecular species in biological tissues with exceptional chemical specificity. However, IMS is hindered by relatively low... Read more

Industry

view channel
Image: Alzheimer’s Association has released its first clinical practice guideline for blood-based biomarker tests (Photo courtesy of Alzheimer’s Association)

New Clinical Guidelines Recommend Use of Blood Tests Instead of Brain Scans for Alzheimer’s Diagnosis

Alzheimer’s disease is a progressive neurodegenerative condition that remains challenging to diagnose early and accurately, particularly in individuals with cognitive impairment. Despite the availability... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.