We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




MD Mouse Model Used to Tweak Gene-Editing Protocols

By LabMedica International staff writers
Posted on 25 Mar 2019
Print article
Image: The lack of dystrophin, shown in red, in an unedited human heart muscle cell with DMD (left) and the restoration of dystrophin in a CRISPR-edited human heart muscle cell (right) (Photo courtesy of the University of Texas Southwestern Medical Center).
Image: The lack of dystrophin, shown in red, in an unedited human heart muscle cell with DMD (left) and the restoration of dystrophin in a CRISPR-edited human heart muscle cell (right) (Photo courtesy of the University of Texas Southwestern Medical Center).
A new mouse model of Duchenne muscular dystrophy (DMD) that carries the exon 44 deletion mutation was used to develop strategies for correction of this mutation employing CRISPR/Cas9 to edit surrounding exons, which restores the dystrophin open reading frame.

DMD is caused by mutations in the gene that encodes dystrophin, a protein crucial for maintaining muscle cell integrity and function, and the subsequent disruption of the dystrophin-associated protein complex (DAPC). There are more than 3000 different mutations in the X-chromosome-linked dystrophin gene, and the disease effects about one of every 3,500 boys whose functioning of cardiac and skeletal muscle is so degraded that they die usually before reaching the age of 30. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Development of a method to correct the exon 44 mutation would be expected to benefit about 12% of DMD patients.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand. Efficient genome editing with Cas9-sgRNA in vivo has required the use of viral delivery systems, which limits some clinical applications.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) crafted a simple and efficient strategy for correction of exon 44 deletion mutations by CRISPR/Cas9 gene editing in cardiomyocytes obtained from patient-derived induced pluripotent stem cells and in a new mouse model harboring the same deletion mutation.

The investigators used AAV9 (a harmless adeno-associated virus) to transport the Cas9 enzyme and single guide RNAs. Results reported in the March 6, 2019, online edition of the journal Science Advances demonstrated the importance of the dosages of these gene-editing components for optimal gene correction in vivo. The sgRNAs were found to be limiting for optimal gene editing in vivo and editing efficiency could be enhanced by about 10-fold by optimizing the dose of AAVs encoding Cas9 and sgRNAs.

"As we test CRISPR on other defective parts of the dystrophin gene, it may be important to tweak our formulas for optimal results," said senior author Dr. Eric N. Olson, professor of molecular biology at the University of Texas Southwestern Medical Center. "This new insight further facilitates the use of CRISPR as a therapy for Duchenne and perhaps a number of other diseases. We have more to do before we can use this clinically, but it is exciting to see how far we have come."

Related Links:
University of Texas Southwestern Medical Center

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.