We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Suppression of a Specific Kinase Blocks Growth of Dependent Tumors

By LabMedica International staff writers
Posted on 20 Dec 2018
A recent paper revealed that the enzyme glycogen synthase kinase 3 (GSK3) was required for the in vitro and in vivo growth and survival of human mutant KRas-dependent tumors but was dispensable for mutant KRas-independent tumors.

Approximately 20% of all human cancers have mutations in the KRas (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) gene. More...
These KRas-mutant cancers are among the most difficult to treat due to their resistance to chemotherapy.

Since targeting KRas directly has proven difficult, identifying vulnerabilities specific for mutant KRas tumors is an important alternative approach. Toward this end, investigators at the Moffit Cancer Center (Tampa, FL, USA) sought to identify kinases and their corresponding pathways that were required by mutant KRas tumors in order to induce malignant transformation and to target such pathways for cancer therapy.

They reported in the December 4, 2018, online edition of the journal Nature Communications that the kinase GSK3 was necessary for survival of a KRas-dependent cancer cell line, and that suppression of GSK3 inhibited tumor growth by increasing the levels of beta-catenin, a dual function protein, involved in regulation and coordination of cell–cell adhesion and gene transcription, and c-Myc, a regulator of genes and proto-oncogenes that code for transcription factors. Inhibiting phosphorylation of the GSK3 substrates c-Myc and beta-catenin and their subsequent upregulation contributed to the antitumor activity of GSK3 inhibition.

The investigators showed that GSK3 chemical or genetic blockade inhibited the growth in mice of mutant KRas primary and metastatic patient-derived xenografts from pancreatic cancer patients who had progressed despite chemo- and radiation therapies. This discovery has opened new avenues to target mutant KRas-dependent cancers.

“This study discovered a novel vulnerability in mutant KRas-addicted human cancers. We have uncovered an essential link between GSK3 activity and mutant KRas dependency that is highly relevant in many aggressive and end-stage cancers. This discovery opens new avenues to target mutant KRas-addicted cancers,” said senior author Dr. Said Sebti, a senior member of the drug discovery department at Moffit Cancer Center.

Related Links:
Moffit Cancer Center


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Pipette
Accumax Smart Series
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A simple blood sample that allows DNA methylation could identify epigenetic biomarkers (Photo courtesy of 123RF)

Simple Blood Sample Could Identify Epigenetic Biomarkers to Predict CVD Risk in Type 2 Diabetes

People with type 2 diabetes face up to four times higher risk of cardiovascular events such as heart attacks, strokes, and angina compared to individuals without the condition. Yet, current tools used... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The new technology could predict who will benefit from immunotherapy (Photo courtesy of Max Delbrück Center)

New Technology Deciphers Immune Cell Communication to Predict Immunotherapy Response

A healthy immune system depends on complex communication between specialized cell types that detect, alert, and eliminate harmful threats. When these immune signaling pathways break down, the result can... Read more

Microbiology

view channel
Image: MycoMEIA Aspergillus Assay is the first FDA-cleared urine-based test for invasive aspergillosis (Photo courtesy of Pearl Diagnostics)

Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People

Invasive Aspergillosis (IA), a life-threatening fungal infection, poses a serious threat to immunocompromised individuals, especially those with hematologic malignancies, transplants, or severe lung diseases.... Read more

Industry

view channel
Image: The acquisition of Exosome Diagnostics adds the ExoDx Prostate test to Mdxhealth’s portfolio (Photo courtesy of Bio-Techne)

Bio-Techne Divests Exosome Diagnostics to Reposition Product Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has entered into an agreement with Mdxhealth SA (Irvine, CA, USA), which will acquire its Exosome Diagnostics Inc. (Waltham, MA, US) business, including the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.