We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




New Method Eliminates Unwanted Neurons from Cultures of Kidney Organoids

By LabMedica International staff writers
Posted on 26 Nov 2018
A method has been reported that is able to eliminate more than 90% of unwanted neurons from cultures of stem cell-generated kidney cell organoids.

Kidney organoids derived from human pluripotent stem cells have great utility for investigating organ development and disease mechanisms and, potentially, as a replacement tissue source. More...
However, it is not clear how closely organoids derived using current protocols replicate the adult human kidney.

To clarify this issue, investigators at Washington University (St. Louis, MO, USA) compared two directed differentiation protocols - starting from embryonic stem cells or from induced pluripotent stem cells - using single-cell transcriptomic analysis of 83,130 cells from 65 organoids. These results were matched with single-cell transcriptomes of fetal and adult kidney cells.

Results published in the November 15, 2018, online edition of the journal Cell Stem Cell revealed that both protocols generated a diverse range of kidney cells with differing ratios, but organoid-derived cell types were immature, and 10% to 20% of cells were not kidney cells.

The investigators found that brain-derived neurotrophic factor (BDNF) and its receptor neurotrophic tyrosine kinase, receptor, type 2 (NTRK2) were expressed in the neuronal lineage during organoid differentiation. BDNF is a protein that acts on certain neurons of the central nervous system and the peripheral nervous system, helping to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses. The TrkB receptor is encoded by the NTRK2 gene and is a member of a receptor family of tyrosine kinases. The activation of the BDNF-TrkB pathway is important in the development of short-term memory and the growth of neurons.

Further analysis revealed that by inhibiting the BDNF-NTRK2 pathway, it was possible to improve organoid formation by reducing neurons by 90% without affecting kidney differentiation.

“There is a lot of enthusiasm for growing organoids as models for diseases that affect people,” said senior author Dr. Benjamin D. Humphreys, professor of nephrology at Washington University. “But scientists have not fully appreciated that some of the cells that make up those organoids may not mimic what we would find in people. The good news is that with a simple intervention, we could block most of the rogue cells from growing. This should really accelerate our progress in making organoids better models for human kidney disease and drug discovery, and the same technique could be applied to targeting rogue cells in other organoids.”

“Progress to develop better treatments for kidney disease is slow because we lack good models,” said Dr. Humphreys. “We rely on mice and rats, and they are not little humans. There are many examples of drugs that have done magically well at slowing or curing kidney disease in rodents but failed in clinical trials. So, the notion of channeling human stem cells to organize into a kidney-like structure is tremendously exciting because many of us feel that this potentially eliminates that "lost in translation" aspect of going from a mouse to a human.”

Related Links:
Washington University


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Mini Vortex Mixer
Vornado
New
Toxoplasma Gondii Test
Toxo IgG ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Switching to an experimental drug after liquid biopsy detection of breast cancer recurrence can improve outcomes (Photo courtesy of Shutterstock)

Treatment Switching Guided by Liquid Biopsy Blood Tests Improves Outcomes for Breast Cancer Patients

Standard treatment for patients with advanced estrogen receptor (ER)-positive, HER2-negative breast cancer, a subtype driven by estrogen receptors that fuel tumor growth, often involves aromatase inhibitors,... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.