We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Method Eliminates Unwanted Neurons from Cultures of Kidney Organoids

By LabMedica International staff writers
Posted on 26 Nov 2018
A method has been reported that is able to eliminate more than 90% of unwanted neurons from cultures of stem cell-generated kidney cell organoids.

Kidney organoids derived from human pluripotent stem cells have great utility for investigating organ development and disease mechanisms and, potentially, as a replacement tissue source. More...
However, it is not clear how closely organoids derived using current protocols replicate the adult human kidney.

To clarify this issue, investigators at Washington University (St. Louis, MO, USA) compared two directed differentiation protocols - starting from embryonic stem cells or from induced pluripotent stem cells - using single-cell transcriptomic analysis of 83,130 cells from 65 organoids. These results were matched with single-cell transcriptomes of fetal and adult kidney cells.

Results published in the November 15, 2018, online edition of the journal Cell Stem Cell revealed that both protocols generated a diverse range of kidney cells with differing ratios, but organoid-derived cell types were immature, and 10% to 20% of cells were not kidney cells.

The investigators found that brain-derived neurotrophic factor (BDNF) and its receptor neurotrophic tyrosine kinase, receptor, type 2 (NTRK2) were expressed in the neuronal lineage during organoid differentiation. BDNF is a protein that acts on certain neurons of the central nervous system and the peripheral nervous system, helping to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses. The TrkB receptor is encoded by the NTRK2 gene and is a member of a receptor family of tyrosine kinases. The activation of the BDNF-TrkB pathway is important in the development of short-term memory and the growth of neurons.

Further analysis revealed that by inhibiting the BDNF-NTRK2 pathway, it was possible to improve organoid formation by reducing neurons by 90% without affecting kidney differentiation.

“There is a lot of enthusiasm for growing organoids as models for diseases that affect people,” said senior author Dr. Benjamin D. Humphreys, professor of nephrology at Washington University. “But scientists have not fully appreciated that some of the cells that make up those organoids may not mimic what we would find in people. The good news is that with a simple intervention, we could block most of the rogue cells from growing. This should really accelerate our progress in making organoids better models for human kidney disease and drug discovery, and the same technique could be applied to targeting rogue cells in other organoids.”

“Progress to develop better treatments for kidney disease is slow because we lack good models,” said Dr. Humphreys. “We rely on mice and rats, and they are not little humans. There are many examples of drugs that have done magically well at slowing or curing kidney disease in rodents but failed in clinical trials. So, the notion of channeling human stem cells to organize into a kidney-like structure is tremendously exciting because many of us feel that this potentially eliminates that "lost in translation" aspect of going from a mouse to a human.”

Related Links:
Washington University


Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.