We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nontoxic QD Nanoparticles Inhibit Cancer Cell Growth

By LabMedica International staff writers
Posted on 29 May 2018
An environmentally friendly method has been developed for the production of quantum dot nanoparticles, which have antimicrobial properties and demonstrate potential for cancer diagnosis and treatment.

Low-dimensional (<10 nanometer) semiconductor quantum dots (QDs) have received great attention for potential use in biomedical applications (diagnosis and therapy) for which larger nanoparticles (>10 nanometers) are not suitable. More...
However, the chemical synthesis of quantum dots is complicated, expensive, and has toxic side effects.

To avoid these toxic effects, investigators at Swansea University (United Kingdom) developed a non-toxic plant-based alternative method of producing quantum dots, using tealeaf extract. Extracts derived from tealeaves (Camellia sinensis) contain a wide variety of compounds, including polyphenols, amino acids, vitamins, and antioxidants. The investigators added tealeaf extract to a mixture of cadmium sulfate (CdSO4) and sodium sulfide (Na2S) and allowed the solution to incubate until quantum dots formed.

The investigators examined the biological activity of these CdS QDs in different applications, namely, (a) antibacterial activity, (b) bioimaging, and (c) apoptosis of lung cancer cells. The antibacterial activity of the CdS QDs was evaluated and showed that CdS QDs effectively inhibited bacterial growth.

The investigators further reported in the March 9, 2018, online edition of the journal Applied Nano Materials that the quantum dots exhibited cytotoxicity toward A549 lung cancer cells when compared to a control (no QD treatment). The cytotoxic effect on A549 cancer cells was comparable to that of a standard drug, cisplatin. Furthermore, these CdS QDs produced high-contrast fluorescence images of A549 cancer cells indicating a strong interaction with the cancer cell.

To further understand the role of CdS QDs in bioimaging and the cytotoxic effect in A549 cells, the investigators performed fluorescence emission and flow cytometry analyses. The flow cytometry analysis confirmed that the CdS QDs were arresting A549 cell growth at the S phase of the cell cycle, inhibiting further growth of these lung cancer cells.

Senior author Dr. Sudhagar Pitchaimuthu, senior research fellow in engineering at Swansea University, said, "Our research confirmed previous evidence that tea leaf extract can be a non-toxic alternative to making quantum dots using chemicals. The real surprise, however, was that the dots actively inhibited the growth of the lung cancer cells. We had not been expecting this. The CdS quantum dots derived from tealeaf extract showed exceptional fluorescence emission in cancer cell bioimaging compared to conventional CdS nanoparticles. Quantum dots are therefore a very promising avenue to explore for developing new cancer treatments. Building on this exciting discovery, the next step is to scale up our operation, hopefully with the help of other collaborators. We want to investigate the role of tealeaf extract in cancer cell imaging, and the interface between quantum dots and the cancer cell. We would like to set up a "quantum dot factory" which will allow us to explore more fully the ways in which they can be used."

Related Links:
Swansea University


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
Rapid Molecular Testing Device
FlashDetect Flash10
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.