We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




HTS Method Based on 3D Tumor Organoid Cultures

By LabMedica International staff writers
Posted on 30 Apr 2018
A drug development team has described a high-throughput screening (HTS)-compatible method – based on three-dimensional (3D) tumor organoids – for evaluating multiple chemical compounds for potential chemotherapeutic drug candidates.

Traditional high-throughput drug screening in cancer research routinely relies on two-dimensional cell models, which inadequately recapitulate the physiologic context of cancer. More...
Three-dimensional cell models are thought to better mimic the complexity of in vivo tumors. Numerous methods to culture three-dimensional organoids have been described, but most are nonhomogeneous and expensive, and hence impractical for high-throughput screening (HTS) purposes.

Investigators at the Scripps Research Institute (Jupiter, FL, USA) sought to develop an improved screening method based on three-dimensional organoids. To this end, the described in the April 19, 2018, online edition of the journal SLAS Discovery an HTS-compatible method that enabled the consistent production of organoids in standard flat-bottom 384- and 1536-well plates by combining the use of a cell-repellent surface with a bio-printing technology incorporating magnetic force.

This novel method combined specialized high-density microtiter plates formulated with an ultra-low attachment surface along with gold nanoparticles (nanoshuttles), which were used to label cancer cells in vitro. Once labeled, a magnet assembled the cells into a three-dimensional spheroid or organoid structure. This three-dimensional structure was retained, and chemical compounds were added to assess their therapeutic efficacy.

The investigators validated this process by evaluating the effects of well-characterized anticancer agents against four patient-derived pancreatic cancer KRAS mutant-associated primary cells, including cancer-associated fibroblasts. The technology was tested for its compatibility with HTS automation by completing a cytotoxicity pilot screen of around 3300 approved drugs.

Data obtained during the study indicated that the technique could be readily applied to support large-scale drug screening relying on clinically relevant, three-dimensional tumor models directly harvested from patients, an important milestone toward personalized medicine.

Related Links:
Scripps Research Institute


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Serological Pipet Controller
PIPETBOY GENIUS
New
PBC Assay
Primary Biliary Cholangitis Assays
New
Silver Member
Cell and Tissue Culture Plastics
Diamond® SureGro™ Cell and Tissue Culture Plastics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.