Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microscopy Technique Monitors Biomarkers of Subcellular Alterations

By LabMedica International staff writers
Posted on 20 Mar 2018
A fluorescence microscopy technique has been adapted for monitoring subcellular functional and structural alterations that may be associated with changes in cellular metabolism indicative of the development and progression of numerous diseases, including cancer, diabetes, and cardiovascular and neurodegenerative disorders.

Monitoring subcellular functional and structural changes associated with metabolism is essential for understanding healthy tissue development and the progression of numerous diseases. More...
Unfortunately, established methods for this purpose either are destructive or require the use of exogenous agents.

To avoid these shortcomings, investigators at Tufts University (Medford/Sommerville, MA, USA) developed a quantitative approach to detecting both functional and structural metabolic biomarkers noninvasively based on two-photon excited fluorescence (TPEF).

TPEF is a fluorescence imaging technique that allows imaging of living tissue up to about one millimeter in depth. It differs from traditional fluorescence microscopy, in which the excitation wavelength is shorter than the emission wavelength, as the wavelengths of the two exciting photons are longer than the wavelength of the resulting emitted light. Two-photon excitation microscopy typically uses near-infrared excitation light, which can also excite fluorescent dyes. However, for each excitation, two photons of infrared light are absorbed. Using infrared light minimizes scattering in the tissue. Due to the multiphoton absorption, the background signal is strongly suppressed. Both effects lead to an increased penetration depth for these microscopes.

The newly developed technique relied on endogenous TPEF from two coenzymes, NADH (reduced form of nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide). The investigators performed multi-parametric analysis of three optical biomarkers within intact, living cells and three-dimensional tissues: cellular redox state, NADH fluorescence lifetime, and mitochondrial clustering. They monitored the biomarkers in cells and tissues subjected to metabolic perturbations that triggered changes in distinct metabolic processes, including glycolysis and glutaminolysis, extrinsic and intrinsic mitochondrial uncoupling, and fatty acid oxidation and synthesis.

Results published in the March 7, 2018, online edition of the journal Science Advances revealed that these optical biomarkers provided complementary insights into the underlying biological mechanisms. Thus, when used in combination, these biomarkers could serve as a valuable tool for sensitive, label-free identification of changes in specific metabolic pathways and characterization of the heterogeneity of the elicited responses with single-cell resolution.

“Taken together, these three parameters begin to provide more specific, and unique metabolic signatures of cellular health or dysfunction,” said senior author Dr. Irene Georgakoudi, professor of biomedical engineering at Tufts University. “The power of this method is the ability to get the information on live cells, without the use of contrast agents or attached labels that could interfere with results.”

Related Links:
Tufts University


Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
Blood Glucose Test Strip
AutoSense Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.