We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Microscopy Technique Monitors Biomarkers of Subcellular Alterations

By LabMedica International staff writers
Posted on 20 Mar 2018
A fluorescence microscopy technique has been adapted for monitoring subcellular functional and structural alterations that may be associated with changes in cellular metabolism indicative of the development and progression of numerous diseases, including cancer, diabetes, and cardiovascular and neurodegenerative disorders.

Monitoring subcellular functional and structural changes associated with metabolism is essential for understanding healthy tissue development and the progression of numerous diseases. More...
Unfortunately, established methods for this purpose either are destructive or require the use of exogenous agents.

To avoid these shortcomings, investigators at Tufts University (Medford/Sommerville, MA, USA) developed a quantitative approach to detecting both functional and structural metabolic biomarkers noninvasively based on two-photon excited fluorescence (TPEF).

TPEF is a fluorescence imaging technique that allows imaging of living tissue up to about one millimeter in depth. It differs from traditional fluorescence microscopy, in which the excitation wavelength is shorter than the emission wavelength, as the wavelengths of the two exciting photons are longer than the wavelength of the resulting emitted light. Two-photon excitation microscopy typically uses near-infrared excitation light, which can also excite fluorescent dyes. However, for each excitation, two photons of infrared light are absorbed. Using infrared light minimizes scattering in the tissue. Due to the multiphoton absorption, the background signal is strongly suppressed. Both effects lead to an increased penetration depth for these microscopes.

The newly developed technique relied on endogenous TPEF from two coenzymes, NADH (reduced form of nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide). The investigators performed multi-parametric analysis of three optical biomarkers within intact, living cells and three-dimensional tissues: cellular redox state, NADH fluorescence lifetime, and mitochondrial clustering. They monitored the biomarkers in cells and tissues subjected to metabolic perturbations that triggered changes in distinct metabolic processes, including glycolysis and glutaminolysis, extrinsic and intrinsic mitochondrial uncoupling, and fatty acid oxidation and synthesis.

Results published in the March 7, 2018, online edition of the journal Science Advances revealed that these optical biomarkers provided complementary insights into the underlying biological mechanisms. Thus, when used in combination, these biomarkers could serve as a valuable tool for sensitive, label-free identification of changes in specific metabolic pathways and characterization of the heterogeneity of the elicited responses with single-cell resolution.

“Taken together, these three parameters begin to provide more specific, and unique metabolic signatures of cellular health or dysfunction,” said senior author Dr. Irene Georgakoudi, professor of biomedical engineering at Tufts University. “The power of this method is the ability to get the information on live cells, without the use of contrast agents or attached labels that could interfere with results.”

Related Links:
Tufts University


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
Capillary Blood Collection Tube
IMPROMINI M3
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Elecsys Dengue Ag assay is intended for the in vitro qualitative detection of dengue virus NS1 antigen in human serum and plasma (Photo courtesy of Roche)

Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes

Dengue fever remains the most common mosquito-borne viral infection worldwide, posing a major public health challenge as global cases continue to surge. In 2024 alone, more than 14.6 million infections... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.