We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Probes Promise Exceptional Live Cell Images

By LabMedica International staff writers
Posted on 09 May 2017
Development of a new generation of chemiluminescent molecules is expected to lead to synthesis of efficient chemiluminescent probes for microscopy that will be suitable for use under physiological conditions and should provide exceptional live cell images.

Chemiluminescent probes are considered to be among the most sensitive diagnostic tools that provide high signal-to-noise ratio for various applications such as DNA detection and immunoassays.

In this regard, investigators at Tel Aviv University have developed a new molecular methodology to design and foresee light-emission properties of turn-ON chemiluminescent dioxetane probes suitable for use under physiological conditions. More...
The methodology is based on incorporation of a substituent on the benzoate species obtained during the chemiexcitation pathway of a Schaap’s adamantylidene–dioxetane probe. A striking substituent effect on the chemiluminescent efficiency of the probes was obtained when acrylate and acrylonitrile electron-withdrawing groups were installed. The chemiluminescent quantum yield of the best probe was more than three orders of magnitude higher than that of a standard, commercially available adamantylidene–dioxetane probe. These may be the most powerful chemiluminescent dioxetane probes synthesized to date that are suitable for use under aqueous conditions.

The investigators reported in the March 8, 2017, online edition of the journal ACS Central Science that one of the probes was capable of providing high-quality chemiluminescent cell images based on the endogenous activity of the enzyme beta-galactosidase. They suggested that this may have been the first demonstration of cell imaging achieved by a non-luciferin small-molecule probe with a direct chemiluminescent mode of emission.

"Chemiluminescence is considered one of the most sensitive methods used in diagnostic testing," said senior author Dr. Doron Shabat, professor of chemistry at Tel Aviv University. "We have developed a method to prepare highly efficient compounds that emit light upon contact with a specific protein or chemical. These compounds can be used as molecular probes to detect cancerous cells, among other applications."


Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.