We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




New Imaging Technique Provides Insights on Telomere Structure

By LabMedica International staff writers
Posted on 16 Feb 2016
A new microscopy technique enables direct visualization of DNA wrapping outside and around histone proteins, such as in telomeres.

Developed by researchers at North Carolina State University (NCSU; Raleigh, USA), the new imaging technique, known as dual-resonance-frequency-enhanced electrostatic force microscopy (DREEM), utilizes the fact that DNA is negatively charged along its backbone. More...
By applying both direct and alternating current biases between the atomic force microscopy (AFM) probe and the sample surface, the technique can detect very weak electrostatic interaction differences when it scans over protein, as compared to DNA regions.

By using DREEM, the researchers were able to see the DNA's path through the T-loop formation created by telomeric repeat-binding factor 2 (TRF2), a key protein in telomere complex structural integrity. The researchers were thus able to envisage how TRF2 compacts DNA, concluding that there may be two orders of DNA compaction within the telomere. First, DNA wraps around a TRF2 protein in the interior of the complex; then, multiple TRF2 molecules come together and create DNA loops that stick out from the TRF2 proteins. The study was published on February 9, 2016, in Nature Scientific Reports.

“We think that this protruding loop provides the entering site for the telomere overhangs to tuck in to form the T-loop structure. This process ultimately helps to maintain the protective structure that prevents fusion of chromosomes or the slow erosion of telomere DNA,” said lead author physicist Hong Wang, PhD. “Revealing DNA paths in TRF2 complexes provides new mechanistic insights into structure-function relationships underlying telomere maintenance pathways.”

Telomeres are essentially caps on the ends of linear DNA chromosomes. In healthy cells, telomeres protect the chromosome by tucking away any overhanging ends of DNA strands to form a lasso-like structure known as a T-loop. Loss of telomere function can activate a DNA damage response, leading to cell senescence, nucleolytic degradation of the natural chromosome ends, or end-to-end fusions.

Related Links:

North Carolina State University



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new analysis of blood samples links specific protein patterns to five- and ten-year mortality risk (Photo courtesy of Adobe Stock)

Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention

Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.