Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Nanoparticle-Based Hydrogel Liquefies Under Pressure for Delivery by Syringe

By LabMedica International staff writers
Posted on 04 Mar 2015
A hydrogel that liquefies under pressure but reforms as a gel when the pressure is released has been recruited as a delivery system for both hydrophobic and hydrophilic anticancer agents.

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) created the hydrogel by mixing PEG-PLA (polyethylene glycol- polymerized lactic acid) nanoparticles with polymeric cellulose. More...
Each polymer chain formed weak bonds with a number of nanoparticles, producing a loosely woven lattice of polymers and nanoparticles. As each attachment point was fairly weak, the bonds disassociated under the mechanical stress of being injected through a syringe. Once the shear forces had abated, the polymers and nanoparticles formed new attachments with different partners, returning the conglomerate to the gel form.

The composition of the gel allowed it to be loaded simultaneously with two different types of drugs. The PEG-PLA nanoparticles had an inner core capable of carrying small-molecule hydrophobic drugs, which include many chemotherapy agents. At the same time, the cellulose polymer, which existed in aqueous solution, could transport hydrophilic molecules such as proteins, including antibodies and growth factors.

A detailed description of the hydrogel as well as results of an in vivo experiment in which gels injected under the skin of mice survived and successfully released two drugs—one hydrophobic and one hydrophilic—over a period of several days, was published in the February 19, 2015, online edition of the journal Nature Communications.

“We are working with really simple materials,” said contributing author Dr. Mark Tibbitt, a postdoctoral researcher at the Massachusetts Institute of Technology. “They do not require any advanced chemical functionalization. Now you have a gel that can change shape when you apply stress to it, and then, importantly, it can re-heal when you relax those forces. That allows you to squeeze it through a syringe or a needle and get it into the body without surgery.”

Related Links:

Massachusetts Institute of Technology



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new analysis of blood samples links specific protein patterns to five- and ten-year mortality risk (Photo courtesy of Adobe Stock)

Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention

Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.