We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanoparticle-Based Hydrogel Liquefies Under Pressure for Delivery by Syringe

By LabMedica International staff writers
Posted on 04 Mar 2015
A hydrogel that liquefies under pressure but reforms as a gel when the pressure is released has been recruited as a delivery system for both hydrophobic and hydrophilic anticancer agents.

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) created the hydrogel by mixing PEG-PLA (polyethylene glycol- polymerized lactic acid) nanoparticles with polymeric cellulose. More...
Each polymer chain formed weak bonds with a number of nanoparticles, producing a loosely woven lattice of polymers and nanoparticles. As each attachment point was fairly weak, the bonds disassociated under the mechanical stress of being injected through a syringe. Once the shear forces had abated, the polymers and nanoparticles formed new attachments with different partners, returning the conglomerate to the gel form.

The composition of the gel allowed it to be loaded simultaneously with two different types of drugs. The PEG-PLA nanoparticles had an inner core capable of carrying small-molecule hydrophobic drugs, which include many chemotherapy agents. At the same time, the cellulose polymer, which existed in aqueous solution, could transport hydrophilic molecules such as proteins, including antibodies and growth factors.

A detailed description of the hydrogel as well as results of an in vivo experiment in which gels injected under the skin of mice survived and successfully released two drugs—one hydrophobic and one hydrophilic—over a period of several days, was published in the February 19, 2015, online edition of the journal Nature Communications.

“We are working with really simple materials,” said contributing author Dr. Mark Tibbitt, a postdoctoral researcher at the Massachusetts Institute of Technology. “They do not require any advanced chemical functionalization. Now you have a gel that can change shape when you apply stress to it, and then, importantly, it can re-heal when you relax those forces. That allows you to squeeze it through a syringe or a needle and get it into the body without surgery.”

Related Links:

Massachusetts Institute of Technology



New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
DNA/RNA Extraction/Purification Kit
Nucleic Acid Extraction or Purification Kit
New
Drug Test Kit
DrugCheck 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.