We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Nanoparticle-Based Hydrogel Liquefies Under Pressure for Delivery by Syringe

By LabMedica International staff writers
Posted on 04 Mar 2015
A hydrogel that liquefies under pressure but reforms as a gel when the pressure is released has been recruited as a delivery system for both hydrophobic and hydrophilic anticancer agents.

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) created the hydrogel by mixing PEG-PLA (polyethylene glycol- polymerized lactic acid) nanoparticles with polymeric cellulose. More...
Each polymer chain formed weak bonds with a number of nanoparticles, producing a loosely woven lattice of polymers and nanoparticles. As each attachment point was fairly weak, the bonds disassociated under the mechanical stress of being injected through a syringe. Once the shear forces had abated, the polymers and nanoparticles formed new attachments with different partners, returning the conglomerate to the gel form.

The composition of the gel allowed it to be loaded simultaneously with two different types of drugs. The PEG-PLA nanoparticles had an inner core capable of carrying small-molecule hydrophobic drugs, which include many chemotherapy agents. At the same time, the cellulose polymer, which existed in aqueous solution, could transport hydrophilic molecules such as proteins, including antibodies and growth factors.

A detailed description of the hydrogel as well as results of an in vivo experiment in which gels injected under the skin of mice survived and successfully released two drugs—one hydrophobic and one hydrophilic—over a period of several days, was published in the February 19, 2015, online edition of the journal Nature Communications.

“We are working with really simple materials,” said contributing author Dr. Mark Tibbitt, a postdoctoral researcher at the Massachusetts Institute of Technology. “They do not require any advanced chemical functionalization. Now you have a gel that can change shape when you apply stress to it, and then, importantly, it can re-heal when you relax those forces. That allows you to squeeze it through a syringe or a needle and get it into the body without surgery.”

Related Links:

Massachusetts Institute of Technology



New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Collection and Transport System
PurSafe Plus®
Laboratory Software
ArtelWare
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.