We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Network-Extracted Ontologies Organize Knowledge from Genomic Data

By LabMedica International staff writers
Posted on 24 Dec 2012
Converting huge amounts of genomic information into meaningful data about cellular processes is one of the biggest challenges of bioinformatics, and has great implications for the fields of human biology and medicine. More...
Scientists have now devised new technology that generates a computational model of the cell from vast networks of gene and protein interactions, learning how genes and proteins connect to form higher-level cellular processes.

The study’s findings were published in the December 16, 2012, advance online publication of the journal Nature Biotechnology. “Our method creates ontology, or a specification of all the major players in the cell and the relationships between them,” said first author Janusz Dutkowski, PhD, postdoctoral researcher in the University of California (UC), San Diego School of Medicine (USA). It utilizes knowledge about how genes and proteins interact with each other and automatically organizes these data to form a comprehensive catalog of gene functions, cellular components, and mechanisms.

“What’s new about our ontology is that it is created automatically from large datasets. In this way, we see not only what is already known, but also potentially new biological components and processes--the bases for new hypotheses,” said Dr. Dutkowski.

Originally designed by philosophers attempting to clarify the nature of life, ontologies are now widely used to compress everything known about a subject in a hierarchy of terms and relationships. Intelligent information systems, such as iPhone’s (developed by Apple, Inc. Cupertino, CA, USA) Siri, are constructed on ontologies to enable reasoning about real life. Ontologies are also used by scientists to structure knowledge about topics such as bioactive compounds, taxonomy, anatomy and development, disease, and clinical diagnosis.

A gene ontology (GO) exists as well, constructed over the 10 years through a joint effort of hundreds of scientists. It is considered the gold standard for determining cell structure and gene function, containing 34,765 terms and 64,635 hierarchical relations annotating genes from more than 80 species.

“GO is very influential in biology and bioinformatics, but it is also incomplete and hard to update based on new data,” said senior author Trey Ideker, PhD, chief of the division of genetics in the School of Medicine and professor of bioengineering in UC San Diego’s Jacobs School of Engineering.

“This is expert knowledge based upon the work of many people over many, many years,” said Dr. Ideker, who is also lead investigator of the National Resource for Network Biology, based at UC San Diego. “A fundamental problem is consistency. People do things in different ways, and that impacts what findings are incorporated into GO and how they relate to other findings. The approach we have proposed is a more objective way to determine what's known and uncover what’s new.”

Drs. Dutkowski, Ideker, and colleagues, in their report, exploited the surging capacity and utility of new technologies such as high-throughput assays and bioinformatics to create elaborately detailed datasets describing complex biologic networks. To evaluate this application, the scientists gathered multiple such datasets, applied their technique, and then compared the resulting “network-extracted ontology” to the existing GO. They discovered that their ontology captured most of the known cellular components, in addition to many more terms and relationships, which then triggered updates of the existing GO.

Neither Dr. Ideker nor Dr. Dutkowski say the new approach is intended to replace the current GO. Instead, they foresee it as adjunct high-tech model that identifies both known and uncharacterized biologic components stemming directly from data, something the current GO does not do well. Furthermore, they reported that a network-extracted ontology can be constantly updated and modified with every new dataset, placing scientists closer to the complete model of the cell.

Related Links:
University of California, San Diego School of Medicine




Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.