We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Inhibiting Digestive Enzymes Blocks Malaria Growth

By LabMedica International staff writers
Posted on 10 Feb 2010
A multinational team of parasitologists and molecular biologists used X-ray crystallography to determine the mode of activity of two critical malaria parasite enzymes, which allowed them to suggest a direction for the development of drugs to inactivate them.

The two enzymes, the neutral aminopeptidases, PfA-M1 and PfA-M17 from Plasmodium falciparum, function in regulating the intracellular pool of amino acids required for growth and development of the parasite inside the red blood cell. More...
A previous publication concentrated on PfA-M1, while the current paper, which was published in the January 21, 2010, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS), focused on PfA-M17. While the precise functions of PfA-M1 and PfA-M17 are still speculative, it has been suggested that these enzymes function in the final stages of hemoglobin digestion and degrade the dipeptides produced by the action of various enzymes within the parasite's acidic digestive vacuole. This process is essential for the provision of free amino acids for parasite protein synthesis.

In the current paper, the investigators presented the structure of the hexameric PfA-M17 enzyme, with one and two metal ions bound in the active site. They also determined the structure of PfA-M17 in the complex with the inhibitors bestatin and phosphinic dipeptide analogue. They then compared and contrasted these data with their previously determined structure of PfA-M1 in complex with the same inhibitors and revealed differences in the manner in which the two enzymes receive, bind, and cleave N-terminal amino acid substrates.

The investigators believe that these studies will guide a rational approach toward the development of inhibitors with dual and selective activity for PfA-M17 and PfA-M1. Such reagents should permit key insights into the precise role of each enzyme in the parasite lifecycle and direct the structure-based design of unique classes of antimalarial drugs.

"By blocking the action of these critical parasite enzymes, we have shown that the parasites can no longer survive within the human red blood cell," explained contributing author Dr. John Dalton, professor of parasitology at McGill University (Montreal, QC, Canada).

Related Links:
McGill University



New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.