We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mutated Muscle Glycoprotein Key to Understanding Muscular Dystrophy

By LabMedica International staff writers
Posted on 11 Jan 2010
Mutations that change the binding properties of the muscle protein dystroglycan are an underlying cause of several types of muscular dystrophy. More...


In skeletal muscle, the dystroglycan complex works as a transmembrane linkage between the extracellular matrix and the cytoskeleton. Alpha-dystroglycan is extracellular and binds to laminin in the basement membrane, while beta-dystroglycan is a transmembrane protein and binds to dystrophin, which is a large rod-like cytoskeletal protein. Dystrophin binds to intracellular actin cables. In this way, the dystroglycan complex, which links the extracellular matrix to the intracellular actin cables, is thought to provide structural integrity in muscle tissues. The dystroglycan complex is also known to serve as an agrin receptor in muscle, where it may regulate agrin-induced acetylcholine receptor clustering at the neuromuscular junction. There is also evidence, which suggests the function of dystroglycan as a part of the signal transduction pathway because it is shown that Grb2, a mediator of the Ras-related signal pathway, can interact with the cytoplasmic domain of dystroglycan.

Investigators at the University of Iowa (Iowa City, USA) used mass spectrometry and nuclear magnetic resonance (NMR) to conduct structural analyses of the dystroglycan complex.

They reported in the January 1, 2010, issue of the journal Science that they had identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant alpha-dystroglycan, which was required for laminin binding. Patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly had defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification was mediated by the like-acetylglucosaminyltransferase (LARGE) protein.

"Dystroglycan is a complex and unusual glycoprotein. It is heavily covered with many types of sugars. We wanted to know the shape and make up of the unique sugar chain that allows dystroglycan to bind to laminin," said senior author Dr. Kevin Campbell, professor of molecular physiology and biophysics at the University of Iowa. "This phosphate link is very unusual, which may explain why the actual structure of dystroglycan's laminin-binding sugar chain has been a mystery for many years despite the efforts of numerous research teams. The findings help explain what is happening in congenital muscular dystrophies, where the dystroglycan sugar chain is truncated and ends at the phosphate. The bare phosphate does not bind laminin; it has to be further modified."

"If we can discover the entire structure and make up of the sugar chain beyond the phosphate link, we might be able to target some of the enzymes involved in building the sugar chain, and thus, develop therapies to treat congenital muscular dystrophies," said Dr. Campbell.

Related Links:

University of Iowa



Gold Member
Troponin T QC
Troponin T Quality Control
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.