We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Tissue-Imaging Technology Enables Real-Time Diagnostics

By LabMedica International staff writers
Posted on 04 Jul 2018
A new microscope system can image living tissue in real time and in molecular detail, without any chemicals or dyes. More...
The system is called simultaneous label-free autofluorescence multi-harmonic microscopy (SLAM).

The system uses precisely tailored pulses of light to simultaneously image with multiple wavelengths. This enables scientists to study concurrent processes within cells and tissue, and could give those studying cancer a new tool for tracking tumor progression and physicians new technology for tissue pathology and diagnostics.

Scientists at the University of Illinois at Urbana-Champaign, Urbana, IL, USA) designed an optical imaging platform that performs simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, featuring fast epi-detection of nicotinamide adenine dinucleotide (NADH) from three-photon autofluorescence (3PAF) and simultaneous, and efficient acquisition of autofluorescence (FAD) from two-photon autofluorescence (2PAF), combined with non-centrosymmetric structures from second-harmonic generation (SHG) and interfacial features from third-harmonic generation (THG).

The team saw that the cells near the mammary tumors in rats had differences in metabolism and morphology, indicating that the cells had been recruited by the cancer. In addition, they observed surrounding tissues creating infrastructure to support the tumor, such as collagen and blood vessels. They also saw communication between the tumor cells and the surrounding cells in the form of vesicles, tiny transport packages released by cells and absorbed by other cells. The authors concluded that they had demonstrated the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and are a major enabling advance in label-free intravital microscopy (IVM).

Stephen A. Boppart, MD, PhD, a professor and head of the Biophotonics Imaging Laboratory, and senior author of the study, said, “With advances in microscopy techniques such as ours, we hope to change the way we detect, visualize and monitor diseases that will lead to better diagnosis, treatments and outcomes.” The study was published on May 29, 2018, in the journal Nature Communications.

Related Links:
University of Illinois at Urbana-Champaign


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B
New
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.