We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

By LabMedica International staff writers
Posted on 01 May 2025

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. More...

Optical spectroscopy, which involves shining a laser on a material and observing how light interacts with it, is a widely used technique in chemistry, materials science, and medicine. However, interpreting the resulting spectral data can be challenging and time-consuming, especially when the differences between samples are subtle. Now, a new machine learning (ML) algorithm has been developed to effectively interpret the "light signatures" or optical spectra of molecules, materials, and disease biomarkers, offering the potential for faster and more precise medical diagnoses and sample analysis.

The algorithm, known as Peak-Sensitive Elastic-net Logistic Regression (PSE-LR), was developed by researchers at Rice University (Houston, TX, USA) specifically to analyze light-based data. PSE-LR is not only capable of accurately classifying different samples but also offers transparency in its decision-making process, a feature that many advanced ML models typically lack. The algorithm provides a "feature importance map" that highlights the specific parts of the spectrum that contributed to a particular classification decision, making the results easier to interpret, verify, and act upon. In tests comparing PSE-LR to other ML models, it demonstrated superior performance, particularly in identifying subtle or overlapping spectral features.

The model also excelled in various real-world tests, including detecting ultralow concentrations of the SARS-CoV-2 spike protein in fluid samples, identifying neuroprotective solutions in mouse brain tissue, classifying Alzheimer’s disease samples, and differentiating between 2D semiconductors. This new algorithm could pave the way for the creation of novel diagnostics, biosensors, or nanodevices. The optical spectra of tissues or other biological samples can provide valuable insights into what is happening within the body. This capability is critical because quicker and more accurate disease detection can lead to improved treatments and potentially save lives. Beyond healthcare, the method can also aid scientists in better understanding new materials, facilitating the development of smarter biosensors and more effective nanodevices.

“Imagine being able to detect early signs of diseases like Alzheimer’s or COVID-19 just by shining a light on a drop of fluid or a tissue sample,” said Ziyang Wang, an electrical and computer engineering doctoral student at Rice who is a first author on a study published in ACS Nano. “Our work makes this possible by teaching computers how to better ‘read’ the signal of light scattered from tiny molecules.”


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Noul’s AI-based cervical cancer diagnostic solution, miLab CER (Photo courtesy of Noul)

AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America

Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.