Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

By LabMedica International staff writers
Posted on 01 May 2025

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. More...

Optical spectroscopy, which involves shining a laser on a material and observing how light interacts with it, is a widely used technique in chemistry, materials science, and medicine. However, interpreting the resulting spectral data can be challenging and time-consuming, especially when the differences between samples are subtle. Now, a new machine learning (ML) algorithm has been developed to effectively interpret the "light signatures" or optical spectra of molecules, materials, and disease biomarkers, offering the potential for faster and more precise medical diagnoses and sample analysis.

The algorithm, known as Peak-Sensitive Elastic-net Logistic Regression (PSE-LR), was developed by researchers at Rice University (Houston, TX, USA) specifically to analyze light-based data. PSE-LR is not only capable of accurately classifying different samples but also offers transparency in its decision-making process, a feature that many advanced ML models typically lack. The algorithm provides a "feature importance map" that highlights the specific parts of the spectrum that contributed to a particular classification decision, making the results easier to interpret, verify, and act upon. In tests comparing PSE-LR to other ML models, it demonstrated superior performance, particularly in identifying subtle or overlapping spectral features.

The model also excelled in various real-world tests, including detecting ultralow concentrations of the SARS-CoV-2 spike protein in fluid samples, identifying neuroprotective solutions in mouse brain tissue, classifying Alzheimer’s disease samples, and differentiating between 2D semiconductors. This new algorithm could pave the way for the creation of novel diagnostics, biosensors, or nanodevices. The optical spectra of tissues or other biological samples can provide valuable insights into what is happening within the body. This capability is critical because quicker and more accurate disease detection can lead to improved treatments and potentially save lives. Beyond healthcare, the method can also aid scientists in better understanding new materials, facilitating the development of smarter biosensors and more effective nanodevices.

“Imagine being able to detect early signs of diseases like Alzheimer’s or COVID-19 just by shining a light on a drop of fluid or a tissue sample,” said Ziyang Wang, an electrical and computer engineering doctoral student at Rice who is a first author on a study published in ACS Nano. “Our work makes this possible by teaching computers how to better ‘read’ the signal of light scattered from tiny molecules.”


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Capillary Blood Collection Tube
IMPROMINI M3
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.