We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-Powered Smart PCR System to Revolutionize Clinical Diagnostics

By LabMedica International staff writers
Posted on 23 Oct 2024

Polymerase chain reaction (PCR) is a widely used laboratory technique for amplifying or copying small segments of genetic material, applicable in areas such as DNA fingerprinting, diagnosing genetic disorders, and detecting pathogens like COVID-19. More...

From medical diagnostics to forensic testing and national security, PCR DNA profiling has transformed high-throughput sampling in the 21st century, yet little has changed since its inception in the 1980s. Traditional DNA amplification requires that all parameters be established before the process begins, overlooking the variations that may exist between samples and conditions. Even minor enhancements in PCR performance could significantly affect the hundreds of thousands of DNA samples amplified each year, especially when dealing with degraded samples. Researchers have now made advancements in critical DNA testing by incorporating machine learning into DNA profiling.

The new research by experts at Flinders University (Bedford Park, SA, Australia) revealed substantial improvements in both the quality of DNA profiling and the efficiency of PCR cycling conditions through the application of artificial intelligence (AI) techniques. In their study, the researchers employed machine learning to develop new "smart PCR" systems, focusing on large-scale potential modifications and quicker cycling conditions for faster and more accurate results. Their findings, published in an article in Genes, demonstrated how to set up a system that enables a PCR process to provide real-time feedback, allowing a machine-learning algorithm to make instantaneous adjustments to PCR conditions.

By leveraging advancements in machine learning and sensor technology, the researchers have transformed the PCR process from a one-size-fits-all approach to a tailored and optimized experience, achieving higher quality and greater quantities of DNA in less time than previously possible. According to the researchers, if harnessed effectively, AI and machine learning could significantly enhance the sensitivity of PCR testing. With continued research, these AI-ML methodologies hold promise for improving the quality of trace DNA samples.

“Our system has the potential to overcome challenges that have hindered forensic scientists for decades, especially with trace, inhibited, and degraded samples,” said College of Science and Engineering PhD candidate Caitlin McDonald, who led the study. “By intelligently optimizing PCR for a wide variety of sample types, it can dramatically enhance amplification success, delivering more reliable results in even the most complex cases.”


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.