We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Pathogenic Variant Carriers Missed by Current Genetic Testing

By LabMedica International staff writers
Posted on 27 Jun 2019
Current guidelines recommend genetic testing for people who have a personal or family history of cancer that indicates they might be at an increased risk of harboring a pathogenic familial variant, but this approach could miss people who lack any personal or family history.

Recent advancements in next-generation sequencing have greatly expanded the use of multi-gene testing panels in clinical diagnosis and management. More...
Multi-gene panels are more sensitive and efficient than traditional testing paradigms and are increasingly more affordable. Furthermore, multi-gene panels increase the likelihood of detecting an underlying germline genetic component in diseases with genetic heterogeneity, such as cancer.

A team of scientists working under the auspices of Color Genomics, Inc (Burlingame, CA, USA) retrospective studied included 23,179 individuals who had Color Hereditary Cancer Test results reported between May 2016 and September 2017. The Color Hereditary Cancer Test was used to analyze 30 genes in which pathogenic variants have been associated with an elevated risk of hereditary cancer, including breast, ovarian, uterine/endometrial, colorectal, melanoma, pancreatic, prostate, and stomach.

DNA was extracted from blood or saliva samples and purified using the Chemagic DNA Extraction Kit automated on the Hamilton STAR and the Perkin Elmer Chemagic Liquid Handler instruments. The genes analyzed encompass BRCA1, BRCA2, CDKN2A, PTEN, TP53, and more. Target enrichment was performed with an automated Hamilton STAR hybrid capture procedure using SureSelect XT probes before being loaded onto the NextSeq 500/550 instrument for 150-bp paired-end sequencing.

The team identified 2,811 pathogenic variants in 2,698 individuals, an overall pathogenic variant frequency of 11.6%. Pathogenic variants in BRCA1 and BRCA2 accounted for nearly a third of all positive results, while pathogenic variants linked to Lynch syndrome accounted for another 7.0% of results. They noted that pathogenic variants in BRCA1 or BRCA2 could be found across ethnic groups. While most individuals with a positive result harbored only a single pathogenic variant, a small number had two or more pathogenic variants, such as in BRCA1 or BRCA2 and in another cancer-linked gene. Of the 18,176 individuals in their cohort with sufficient health histories, 61.3% met criteria for genetic testing for breast, ovarian, colorectal, or gastric cancer and 38.7% did not.

Among those patients who did not meet testing criteria, but who underwent testing anyway, the scientists reported an 8.2% pathogenic frequency and, of those, 21.7% had pathogenic variants in genes with well-established testing criteria. That means that of the 749 individuals they identified with a pathogenic variant in BRCA1, BRCA2, TP53, or PTEN, 18.4% would not have met testing guidelines for breast and ovarian cancer. Similarly, slightly more than a third of the individuals they identified with Lynch syndrome-linked variants would not have met testing criteria. The study was published on June 11, 2019, in the Journal of Molecular Diagnostics.

Related Links:
Color Genomics


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Pathology

view channel
Image: The smart microscope can predict the onset of misfolded protein aggregation, a hallmark of neurodegenerative diseases (Photo courtesy of EPFL)

Self-Driving Microscope Tracks and Analyzes Misfolded Protein Aggregation in Real Time

The accumulation of misfolded proteins in the brain is central to the progression of neurodegenerative diseases like Huntington’s, Alzheimer’s, and Parkinson’s. Yet to the human eye, proteins that are... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.