We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




T-Lymphoblastic Leukemia Stem Cells Identified and Isolated

By Labmedica staff writers
Posted on 04 Jun 2008
Scientists have identified and isolated stem cells responsible for T-lymphoblastic leukemia an aggressive and deadly cancer that can occur in both children and adults.

The discovery may lead to new methods for predicting cancer recurrence and ultimately therapies that target these leukemia stem cells, attacking the disease at its very root and killing the early cells that give rise to the mature cancer cells.

Stem cells are believed to be responsible for the origin of many cancers and their ability to become drug-resistant and spread throughout the body. More...
Current cancer therapies do not target cancer stem cells, only the cancer cells that are generated by them. Scientists believe that the cancer stem cells--a very small population when compared with mature cancer cells--lay dormant while cancer cells are killed. Later, the cancer stem cells begin to self-renew and differentiate into malignant cells, causing a recurrence of the disease.

A team of scientists from the University of California in Los Angeles (UCLA; Los Angeles, CA, USA), led Dr. Hong Wu, a professor of medical and molecular pharmacology, and a scientist with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (Los Angeles, CA, USA) identified a type of leukemia stem cell and uncovered the molecular and genetic mechanisms that cause normal blood stem cells to become cancerous.

The cancerous cells were studied in mouse models that developed T-cell leukemia, and a sorting method that sought out certain cell surface markers helped to identify the leukemia stem cells. Those cells were isolated and then transplanted into other mouse models that then developed T-cell leukemia, a sign that the team had been successful in finding the leukemia stem cells. The team also studied the cells at the molecular and genetic level to uncover those mechanisms.

The alterations that contribute to leukemia stem cell formation were found to be the deletion of the PTEN tumor-suppressor gene, a chromosomal translocation involving c-myc, a gene known to result in cancer that is usually regulated, and the activation of a cell signaling pathway called beta catenin.

The discovery may lead to new methods for predicting cancer recurrence and ultimately therapies that target these leukemia stem cells, attacking the disease at its very root and killing the early cells that give rise to the mature cancer cells.

"One of the main challenges in cancer biology is to identify cancer stem cells and define the molecular and genetic events required for transforming normal cells into cancer stem cells,” said Prof. Wu. "With this study, we've been able to do that in one type of leukemia.”

The study appears in the May 22, 2008 issue of the journal Nature.


Related Links:
University of California in Los Angeles
Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research

New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
Serological Pipet Controller
PIPETBOY GENIUS
New
Silver Member
Quality Control Material
Multichem ID-B
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: Student researcher Liyan Ming, first author of the study, setting up a fluorescence imaging experiment (Photo courtesy of Riccardo Marin)

Safer, Portable and Low-Cost Imaging Solution to Revolutionize Biomedical Diagnostics

In diagnosing diseases and monitoring treatment, accurate and quick detection of temperature within biological tissues can be crucial, especially in early disease detection. Conventional methods such as... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.