We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Multiplex Immunoassay Developed for Confirmation and Typing of HTLV Infections

By LabMedica International staff writers
Posted on 24 Nov 2021
Print article
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)
Human T-Cell Lymphotropic Viruses (HTLV) type 1 and type 2 account for an estimated five to 10 million infections worldwide and are transmitted through breast feeding, sexual contacts and contaminated cellular blood components.

HTLV-associated syndromes are considered as neglected diseases for which there are no vaccines or therapies available, making it particularly important to ensure the best possible diagnosis to enable proper counseling of infected persons and avoid secondary transmission. The virus can cause adult T-cell leukemia/lymphoma (ATL) and progressive nervous system condition known as HTLV-1-associated myelopathy or tropical spastic paraparesis.

A large team of scientists from the commercial company InfYnity Biomarkers (Lyon, France) collaborated with several academic institutions to develop and validate a new high-performance multiplex immunoassay for confirmation and discrimination of HTLV-1 and HTLV-2 strains. The team conducted a prospective study with samples from the USA-based cohort HTLV Outcomes Study (HOST) which includes samples from subjects recruited from five major US blood donation centers and 694 frozen serum specimens were obtained from the cohort repository. Included in the study was only the first sample tested of each participant, more specifically, 199 HTLV-positive samples from 199 participants (100 HTLV-1 from 100 patients and 99 HTLV-2 from 99 patients) and 198 negative samples from 198 participants. Other samples were collected from France and Canada.

The multiplex platform was used first as a tool to identify suitable antigens and in a second step for assay development. The Multi-HTLV assay is composed of (i) three confirmatory antigen spots for binding specific HTLV-1 and HTLV-2 antibodies and derived from common-type and type-specific immunodominant epitopes of env GP21, env GP46 and gag P19; and (ii) three discriminatory antigen spots derived from type-specific immunodominant epitopes of HTLV-1 env GP46, HTLV-1 gag P19 and HTLV-2 env GP46.

The Multi-HTLV test was performed very similarly to a standard ELISA assay enabling simultaneous detection of circulating antibodies to a set of selective and validated antigens. Each plate was read and analyzed both visually and using a specific microarray reader sciREADER CL2 (SCIENION, Berlin, Germany) which acquires high-resolution digital images and an integrated software calculates the pixel intensity for each spot.

The investigators reported that the Multi-HTLV assay demonstrated very high performance for confirmation and strain discrimination with 100% sensitivity, 98.1% specificity and 100% of typing accuracy in validation samples. The assay can be interpreted either visually or automatically with a colorimetric image reader and custom algorithm, providing highly reliable results. They observed in 35 of 60 patients a certain dynamic in antibody levels between the initial donation and 10–11 years of follow-up.

The authors concluded that the newly developed Multi-HTLV is very competitive with currently used confirmatory assays and reduces considerably the number of indeterminate results. The multiparametric nature of the assay opens new avenues to study specific serological signatures of each patient, follow the evolution of infection, and explore utility for HTLV disease prognosis. The study was published on November 1, 2021 in the journal PLOS Neglected Tropical Diseases.

Related Links:
InfYnity Biomarkers
SCIENION


Gold Supplier
SARS-CoV-2 S-IgG Antibody Assay
Lumipulse G SARS-CoV-2 S-IgG
New
Tuberculosis (TB) Test
QIAreach QuantiFERON-TB
New
Nucleic Acid Purification System
CloNext 24
New
3-Part Hematology Analyzer
H30 Pro

Print article

Channels

Clinical Chem.

view channel
Image: Illustration is of the Vertical Auto Profile (VAP) Lipid test with clear demarcation of the different lipoprotein classes and subclasses. (Photo courtesy of VAP Diagnostics Laboratory)

Lipoprotein(a) Concentrations Correlate With LDL-C in Diabetic Children

Cardiovascular disease (CVD) is a significant cause of mortality in those with diabetes. Increased apolipoprotein B (apoB) and low-density lipoprotein cholesterol (LDL-C) have been shown in pediatric patients... Read more

Molecular Diagnostics

view channel
Image: The TruSight RNA Fusion Panel kit provides comprehensive gene fusion detection in formalin-fixed, paraffin-embedded (FFPE) and other cancer samples (Photo courtesy of Illumina)

Targeted RNA-Sequencing Panel Detects Gene Fusions in Solid Tumors

Increasingly, rearrangements resulting in gene fusions have been revealed in multiple tumor types across diverse organ systems. These gene fusions can drive tumorigenesis by altering gene expression and activity.... Read more

Hematology

view channel
Image: Blood smear from a patient with low grade follicular lymphoma in leukemic phase: note cleaved nuclei (coffee bean cells) and scant cytoplasm (Photo courtesy of Kyle Bradley, MD)

Classification of Mature B-Cell Neoplasms Employing Standardized Flow Cytometry

The classification of lymphoid neoplasms integrates clinical, pathological, immunophenotypic, genetic, and molecular data in order to distinguish between mature B-cell lymphoma entities.... Read more

Immunology

view channel
Image: Procartaplex Immunoassays Kits are based on the principles of a sandwich ELISA, using two highly specific antibodies binding to different epitopes of one protein to quantitate all protein targets simultaneously (Photo courtesy of Thermo Fisher Scientific)

Assay Developed for Patient-Specific Monitoring and Treatment for Ovarian Cancer

Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing.... Read more

Pathology

view channel
Illustration

Roche Introduces AI-Based Digital Pathology RUO Algorithms for Evaluation of Breast Cancer Markers

Roche (Basel, Switzerland) has announced the research use only (RUO) launch of three new automated digital pathology algorithms, uPath Ki-67 (30-9), uPath ER (SP1) and uPath PR (1E2) image analysis for... Read more

Technology

view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more

Industry

view channel
Illustration

Global Point-of-Care Coagulation Testing Market to Be Driven by Growing Geriatric Population

The global point-of-care (POC) coagulation testing market is set to achieve significant growth on the back of the growing geriatric population and increasing technological innovations in POC testing, although... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.